DIFFERENTIAL GEOMETRY

HOME ASSIGNMENT 1

Please submit your work (by email or on paper) by 10:00 on Monday October 21 to any of the course lecturers.

Exercise 1 Let $k, n \geq 1$ be integers. Let $\sigma_{k, n}:[0,2 k \pi] \rightarrow \mathbb{R}^{2}$ be given by

$$
\sigma_{k, n}(t)=\binom{\left(1+\frac{k}{n}\right) \cos t-\frac{k}{n} \cos \left(\left(1+\frac{n}{k}\right) t\right)}{\left(1+\frac{k}{n}\right) \sin t-\frac{k}{n} \sin \left(\left(1+\frac{n}{k}\right) t\right)}
$$

(1) Prove that $\sigma_{k, n}$ is a closed curve.
(2) Compute the length of $\sigma_{k, n}$.

Hint: You may need to apply the identities
(A) $\cos (\alpha-\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$;
(B) $\sin ^{2}\left(\frac{\alpha}{2}\right)=\frac{1-\cos \alpha}{2}$;
and split the integral over $[0,2 k \pi]$ into integrals over intervals where $\sin \left(\frac{n t}{2 k}\right)$ is positive.

Exercise 2 Let $\sigma:[-2 \pi, 2 \pi] \rightarrow \mathbb{R}^{3}$ be the curve given by

$$
\sigma(t)=(1+\cos t, \sin t, 2 \sin (t / 2))
$$

(1) Prove that σ is regular.
(2) Prove that the support of σ is the intersection of the sphere of radius 2 centred at the origin with the cylinder having equation $(x-1)^{2}+y^{2}=1$.

Exercise 3 Let $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be defined by

$$
\gamma(t)=(a \cosh t, b \sinh t, a t)
$$

(1) Calculate the arc length of γ.
(2) Calculate the curvature of γ.
(3) Calculate the torsion of γ.
(4) Prove that if $a=b=1$ then the curvature is equal to the torsion for every value of the parameter $t \in \mathbb{R}$.

Hint: you may need to apply the following identity
(C) $\cosh \sinh ^{-1}(s)=\sqrt{1+s^{2}}$

Exercise 4 Let $I \subset \mathbb{R}$ be an open interval and $\eta: I \rightarrow \mathbb{R}^{3}$ be a biregular curve parameterized by arc length. Let $\kappa(s)$ and $\tau(s)$ denote the curvature and the torsion of the curve η at s, respectively.
(1) Prove that $\kappa \equiv \pm \tau$ if and only if there exist a nonzero versor \mathbf{v} such that $\langle\mathbf{t}, \mathbf{v}\rangle \equiv\langle\mathbf{b}, \mathbf{v}\rangle$.
(2) Furthermore, prove that if $\kappa \equiv \pm \tau$ then $\langle\mathbf{t}, \mathbf{v}\rangle$ is constant.

DIFFERENTIAL GEOMETRY

HOME ASSIGNMENT 1 (SOLUTIONS)

Exercise 1 Let $k, n \geq 1$ be integers. Let $\sigma_{k, n}:[0,2 k \pi] \rightarrow \mathbb{R}^{2}$ be given by

$$
\sigma_{k, n}(t)=\binom{\left(1+\frac{k}{n}\right) \cos t-\frac{k}{n} \cos \left(\left(1+\frac{n}{k}\right) t\right)}{\left(1+\frac{k}{n}\right) \sin t-\frac{k}{n} \sin \left(\left(1+\frac{n}{k}\right) t\right)} .
$$

(1) Prove that $\sigma_{k, n}$ is a closed curve.
(2) Compute the length of $\sigma_{k, n}$.

Hint: You may need to apply the identities
(A) $\cos (\alpha-\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$;
(B) $\sin ^{2}\left(\frac{\alpha}{2}\right)=\frac{1-\cos \alpha}{2}$;
and split the integral over $[0,2 k \pi]$ into integrals over intervals where $\sin \left(\frac{n t}{2 k}\right)$ is positive.
Solution. For the first item, it is enough to check that $\sigma_{k, n}(0)=\sigma_{k, n}(2 k \pi)$. The verification is immediate since $\frac{n}{k}=2 k \pi=2 n \pi$ is a multiple of 2π.

Let us compute the length of $\sigma_{k, n}$. First of all, we need to compute the norm of $\sigma^{\prime}(t)$. Writing $\sigma_{k, n}(t)=(x(t), y(t))$ we have $\left\|\sigma_{k, n}^{\prime}(t)\right\|=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}$. A direct computation gives

$$
\left\|\sigma_{k, n}^{\prime}(t)\right\|=\left(1+\frac{k}{n}\right) \sqrt{2-2 \sin t \sin \left(\left(1+\frac{n}{k}\right) t\right)-2 \cos t \cos \left(\left(1+\frac{n}{k}\right) t\right)} .
$$

Notice that it is possible to directly sum terms of the form $\cos ^{2}$ and $\sin ^{2}$ to simplify the computations.

Using the identity (A) above with $\alpha=\left(1+\frac{n}{k}\right) t$ and $\beta=t$ (and recalling that $-\sin t=\sin (-t)$ and $\cos t=\cos (-t))$ we get

$$
\left\|\sigma_{k, n}^{\prime}(t)\right\|=\left(1+\frac{k}{n}\right) \sqrt{2-2 \cos \left(\frac{n}{k} t\right)} .
$$

Applying identity (B) with $\alpha=\frac{n t}{k}$ then gives

$$
\left\|\sigma_{k, n}^{\prime}(t)\right\|=\left(1+\frac{k}{n}\right) 2 \sqrt{\sin \left(\frac{n t}{2 k}\right)^{2}}=2\left|\sin \left(\frac{n t}{2 k}\right)\right| .
$$

We thus get that the length $L\left(\sigma_{k, n}\right)$ of $\sigma_{k, n}$ is given by

$$
L\left(\sigma_{k, n}\right)=2\left(1+\frac{k}{n}\right) \int_{0}^{2 k \pi}\left|\sin \left(\frac{n t}{2 k}\right)\right| d t .
$$

The argument of \sin in the last integral is periodic of period $\frac{2 k}{n} 2 \pi=\frac{4 k \pi}{n}$. Because of the absolute value, the argument is periodic of period $\frac{2 k \pi}{n}$. Thus we can split the integral above in n integrals
over $\left[0, \frac{2 k \pi}{n}\right]$ and get

$$
L\left(\sigma_{k, n}\right)=2\left(1+\frac{k}{n}\right) n \int_{0}^{2 k \pi / n} \sin \left(\frac{n t}{2 k}\right) d t .
$$

In the last equation we did non need to write the absolute value, since now sin is positive on the interval.

Computing the integral we finally get

$$
L\left(\sigma_{k, n}\right)=2\left(1+\frac{k}{n}\right) n \frac{2 k}{n}(\cos (0)-\cos \pi)=8 k\left(1+\frac{k}{n}\right),
$$

and the solution is complete.

Exercise 2 Let $\sigma:[-2 \pi, 2 \pi] \rightarrow \mathbb{R}^{3}$ be the curve given by

$$
\sigma(t)=(1+\cos t, \sin t, 2 \sin (t / 2)) .
$$

(1) Prove that σ is regular.
(2) Prove that the support of σ is the intersection of the sphere of radius 2 centred at the origin with the cylinder having equation $(x-1)^{2}+y^{2}=1$.

Solution. (1) We have

$$
\sigma^{\prime}(t)=(-\sin (t), \cos t, \cos (t / 2))
$$

for every t. For every t, at least one of the first two coordinates is non zero. Thus, the vector $\sigma^{\prime}(t)$ is never zero and the curve is regular.
(2) Let us denote by S the sphere and by C the cylinder given in the statement. We denote by $(x(t), y(t), z(t))$ the coordinates of $\sigma(t)$.

We first prove that the support of σ is included in $S \cap C$. For every t, we have

$$
\begin{aligned}
x(t)^{2}+y(t)^{2}+z(t)^{2} & =(1+\cos (t))^{2}+\sin (t)^{2}+4 \sin (t / 2)^{2} \\
& =2+2 \cos (t)+4 \sin (t / 2)^{2}=4
\end{aligned}
$$

where in the last step we applied the identity $\cos (2 \theta)=1-2 \sin (\theta)^{2}$ with $\theta=t / 2$. This proves that the support of σ is included in S. We also have

$$
(x(t)-1)^{2}+y(t)^{2}=\left(1+\cos (t)^{2}-1\right)+\sin (t)^{2}=1,
$$

which proves that $\sigma(t) \in C$ for every t. Summing up, we have that the support of σ is contained in $S \cap C$, as desired.

Let us prove the opposite inclusion. Let $p=\left(x_{0}, y_{0}, z_{0}\right)$ be any point in $S \cap C$. We need to prove the existence of a $t \in[-2 \pi, 2 \pi]$ such that $\sigma(t)=p$. We start considering the system

$$
\left\{\begin{array}{l}
\cos t=x_{0}-1 \\
\sin t=y_{0} .
\end{array}\right.
$$

Since $p \in C$, we have $\left(x_{0}-1\right)^{2}+y_{0}^{2}=1$. Thus it is possible to find a solution for the system above. Notice that we actually have two solutions in the interval of definition $[-2 \pi, 2 \pi]$ of σ. Let us denote them by $t_{0} \in[0,2 \pi]$ and $t_{1}=t_{0}-2 \pi \in[-2 \pi, 0]$. We need to show that one among $z\left(t_{0}\right)=2 \sin \left(t_{0} / 2\right)$ and $z\left(t_{1}\right)=2 \sin \left(t_{1} / 2\right)$ is equal to z_{0}. Notice that these two quantities have opposite sign.

Notice that, given x_{0} and z_{0}, only two possibilities are allowed for z_{0}, and also these choices differ by the sign. More precisely, we have

$$
z_{0}= \pm \sqrt{4-x_{0}^{2}-y_{0}^{2}}
$$

where \pm denotes the two possible choices. The two possible choices $z\left(t_{0}\right)$ and $z\left(t_{2}\right)$ satisfy the above equality (and are the two possible choices) when substituting the values for x_{0} and y_{0} found above. The proof is completed.

Exercise 3 Let $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be defined by

$$
\gamma(t)=(a \cosh t, b \sinh t, a t)
$$

(1) Calculate the arc length of γ.
(2) Calculate the curvature of γ.
(3) Calculate the torsion of γ.
(4) Prove that if $a=b=1$ then the curvature is equal to the torsion for every value of the parameter $t \in \mathbb{R}$.

Hint: you may need to apply the following identity
(C) $\cosh \sinh ^{-1}(s)=\sqrt{1+s^{2}}$

Proof. (1) We have $\gamma^{\prime}(t)=(a \sinh t, b \cosh t, a)$. Thus

$$
\begin{aligned}
\int_{s_{0}}^{s}\left\|\gamma^{\prime}(t)\right\| d t & =\int_{s_{0}}^{s} \sqrt{a^{2} \sinh ^{2}(t)+b^{2} \cosh ^{2} t+a^{2}} d t \\
& =\int_{s_{0}}^{s} \sqrt{\left(a^{2}+b^{2}\right) \cosh ^{2}(t)} d t=\sqrt{a^{2}+b^{2}} \int_{s_{0}}^{s}|\cosh t| d t
\end{aligned}
$$

We take s_{0} and consider positive s (the opposite case is analogous). We get

$$
\int_{s_{0}}^{s}\left\|\gamma^{\prime}(t)\right\| d t=\sqrt{a^{2}+b^{2}}\left(\sinh (s)-\sinh \left(s_{0}\right)\right) .
$$

(2) For the curvature we employ the formula

$$
\kappa(t)=\frac{\left\|\gamma^{\prime}(t) \wedge \gamma^{\prime \prime}(t)\right\|}{\left\|\gamma^{\prime}(t)\right\|^{3}} .
$$

We calculate that

$$
\gamma^{\prime \prime}(t)=(a \cosh t, b \sinh t, 0)
$$

and so

$$
\gamma^{\prime}(t) \wedge \gamma^{\prime \prime}(t)=\left(-a b \sinh t, a^{2} \cosh t,-a b\right) .
$$

Thus

$$
\left\|\gamma^{\prime}(t) \wedge \gamma^{\prime \prime}(t)\right\|=\sqrt{a^{2} b^{2} \sinh ^{2} t+a^{42} t+a^{2} b^{2}}=a \sqrt{a^{2}+b^{2}} \cosh t
$$

Finally, we obtain

$$
\kappa(t)=\frac{a}{\left(a^{2}+b^{2}\right) \cosh ^{2} t} .
$$

(3) For the torsion we employ the formula

$$
\tau(t)=\frac{\left\langle\gamma^{\prime}(t) \wedge \gamma^{\prime \prime}(t)\right\rangle}{\left\|\gamma^{\prime}(t) \wedge \gamma^{\prime \prime}(t)\right\|^{2}}
$$

We calculate that

$$
\gamma^{\prime \prime \prime}(t)=(a \sinh t, b t, 0) .
$$

Thus

$$
\left\langle\gamma^{\prime}(t) \wedge \gamma^{\prime \prime}(t)\right\rangle=a^{2} b
$$

and we obtain

$$
\tau(t)=\frac{b}{\left(a^{2}+b^{2}\right) \cosh t}
$$

(4) Finally, we insert $a=b=1$ in the expressions of the curvature and the torsion above to obtain

$$
\kappa(t)=\frac{1}{2 \cosh t}=\tau(t)
$$

Exercise 4 Let $I \subset \mathbb{R}$ be an open interval and $\eta: I \rightarrow \mathbb{R}^{3}$ be a biregular curve parameterized by arc length. Let $\kappa(s)$ and $\tau(s)$ denote the curvature and the torsion of the curve η at s, respectively.
(1) Prove that $\kappa \equiv \pm \tau$ if and only if there exist a constant nonzero versor \mathbf{v} such that $\langle\mathbf{t}, \mathbf{v}\rangle \equiv$ $\langle\mathbf{b}, \mathbf{v}\rangle$.

Proof. First suppose that there exists a non-zero versor \mathbf{v} which is constant such that

$$
\langle\mathbf{t}, \mathbf{v}\rangle=\langle\mathbf{b}, \mathbf{v}\rangle .
$$

Differentiating the above with respect to s and using that v is constant we obtain

$$
\langle\dot{\mathbf{t}}, \mathbf{v}\rangle=\langle\dot{\mathbf{b}}, \mathbf{v}\rangle
$$

from which we obtain

$$
\langle(\kappa+\tau) \mathbf{n}, \mathbf{v}\rangle=0
$$

This implies that, for any given $s \in I$, (at least) one of the following identities must hold:
(1) $\tau(s)=-k(s)$,
(2) $\langle\mathbf{n}(s), \mathbf{v}\rangle=0$

Let us prove that if the second holds on an interval $I^{\prime} \subset I$ then $\tau(s)=k(s)$ on I^{\prime}. The assertion then follows since the ratio $\tau(s) / k(s)$ must be continuous.

Recall that $\mathbf{t}, \mathbf{n}, \mathbf{b}$ form an orthonormal basis for all $s \in I$. Since $\langle\mathbf{n}, \mathbf{v}\rangle=0$ on I^{\prime}, we must have $\mathbf{v}=A(s) \mathbf{t}+B(s) \mathbf{b}$ for some functions $A(s)$ and $B(s)$. Since \mathbf{v} is constant, by differentiating we get

$$
0=\dot{A}(s) \mathbf{t}+A(s) \dot{\mathbf{t}}+\dot{B}(s) \mathbf{b}+B(s) \dot{\mathbf{b}}=\dot{A}(s) \mathbf{t}+\dot{B}(s) \mathbf{b}+(k A(s)-\tau B(s)) \mathbf{n}
$$

Thus $k A(s)-\tau B(s)=0$. But the assumption $\langle\mathbf{t}, \mathbf{v}\rangle=\langle\mathbf{b}, \mathbf{v}\rangle$ implies that $A(s)=B(s)$, so that $\tau(s)=k(s)$, as desired.

For the opposite inclusion, let us consider the two cases separately.
If $\tau \equiv k$, we have

$$
\dot{\mathbf{t}}=k \mathbf{n}=\tau \mathbf{n}=-\dot{\mathbf{b}}
$$

which means that the vector $\mathbf{v}:=\mathbf{t}+\mathbf{b}$ is constant. Moreover, since $\langle\mathbf{t}, \mathbf{b}\rangle=0$, we have

$$
\langle\mathbf{t}, \mathbf{v}\rangle=\langle\mathbf{t}, \mathbf{t}+\mathbf{b}\rangle=1=\langle\mathbf{b}, \mathbf{t}+\mathbf{b}\rangle=\langle\mathbf{b}, \mathbf{v}\rangle
$$

which proves the statement in this case.
Assume now that $\tau \equiv-k$. In this case, we get $\mathbf{t}-\mathbf{b}=0$, so that the vector $\mathbf{w}:=\mathbf{t}-\mathbf{b}$ is constant. It is then enough to take \mathbf{v} orthogonal to \mathbf{w}. Indeed, we have $\langle\mathbf{t}-\mathbf{b}, \mathbf{v}\rangle=\langle\mathbf{w}, \mathbf{v}\rangle=0$, as desired.

DIFFERENTIAL GEOMETRY

HOME ASSIGNMENT 2

Please submit your work by email by 12.00 on Monday October 28 to all the course lecturers.
Exercise 1 Let $X \subset \mathbb{R}^{3}$ be defined as

$$
X:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2}+1\right\}
$$

and let $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by

$$
\phi(t, h):=\left(\sqrt{h^{2}+1} \cos t, \sqrt{h^{2}+1} \sin t, h\right)
$$

where $\sqrt{ }$ denotes the positive square root. Let $p:=\left(x_{0}, y_{0}, z_{0}\right)$ be any given point in X.
(1) Prove that X is a regular surface.
(2) Prove that there exists $U \subset \mathbb{R}^{2}$ such that the restriction of ϕ to U is a local parametrization of X in p.
(3) Prove or disprove the following: there exists $V \subset \mathbb{R}^{2}$ such that the restriction of ϕ to V is a global parametrization of X.
(4) Compute the tangent space of X at p.
(5) Compute the metric coefficients of the first fundamental form of X at p with respect to ϕ.
(6) Prove that a Gauss map $N: X \rightarrow S^{2}$ of X is well defined. Compute $N(p)$.
(7) Compute the form coefficients of the second fundamental form of X at p with respect to ϕ.

Exercise 2 Let $X \subset \mathbb{R}^{3}$ be defined as

$$
X:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2}+1\right\} .
$$

Give an explicit diffeomorphism F between X and $\mathbb{R}^{2} \backslash\{0\}$ (and prove in detail that F is indeed a diffeomorphism).

Exercise 3 Let $S \subset \mathbb{R}^{3}$ be a surface with a Gauss map $N: S \rightarrow S^{2}$. Prove that $d N \equiv 0$ if and only if S is contained in a plane.

DIFFERENTIAL GEOMETRY

HOME ASSIGNMENT 2 (SOLUTIONS)

Please submit your work by email by 12.00 on Tuesday October 29 to all the course lecturers.
Exercise 1 Let $X \subset \mathbb{R}^{3}$ be defined as

$$
X:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2}+1\right\}
$$

and let $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by

$$
\phi(t, h):=\left(\sqrt{h^{2}+1} \cos t, \sqrt{h^{2}+1} \sin t, h\right)
$$

where $\sqrt{ } \cdot$ denotes the positive square root. Let $p:=\left(x_{0}, y_{0}, z_{0}\right)$ be any given point in X.
(1) Prove that X is a regular surface.
(2) Prove that there exists $U \subset \mathbb{R}^{2}$ such that the restriction of ϕ to U is a local parametrization of X in p.
(3) Prove or disprove the following: there exists $V \subset \mathbb{R}^{2}$ such that the restriction of ϕ to V is a global parametrization of X.
(4) Compute the tangent space of X at p.
(5) Compute the metric coefficients of the first fundamental form of X at p with respect to ϕ.
(6) Prove that a Gauss map $N: X \rightarrow S^{2}$ of X is well defined. Compute $N(p)$.
(7) Compute the form coefficients of the second fundamental form of X at p with respect to ϕ.

Solution.
(1) X is the zero level of the function $G: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $G(x, y, z)=x^{2}+y^{2}-z^{2}-1$. Since the preimage of a regular value is a regular surface, it is enough to prove that 0 is a regular value for G. Recall that this means that no point q in the preimage of 0 is critical, i.e., satisfies $\nabla G=0$. Let us compute the gradient of G. We have

$$
\nabla G(x, y, z)=(2 x, 2 y,-2 z) .
$$

The only point in \mathbb{R}^{3} where ∇G vanishes is thus the origin. Since $G(O)=-1$, the value 0 is regular and X is a regular surface.
(2) As X the zero level set of the function G and 0 is regular value for G it suffices to check that $\phi(U) \subset X,\left.\phi\right|_{U}$ injective and $d\left(\left.\phi\right|_{U}\right)_{t, h}$ injective for all $(t, h) \in U$ in order to conclude that $\left.\phi\right|_{U}$ is a local parametrization of X. It is immediate to check that, for all t, h, the image of ϕ is contained in X. Also, for every $p \in X$ there exists $\left(t_{0}, h_{0}\right)$ such that $p=\phi\left(t_{0}, h_{0}\right)$. It is enough to take for U any sufficiently small neighbourhood U of $\left(t_{0}, h_{0}\right)$ with the property that ϕ is injective on U. Notice that, for instance, we can take the set $U=\left(t_{0}-\pi, t_{0}+\pi\right) \times \mathbb{R}$. It is then straight forward to check that $d \phi_{(t, h)}$ is injective for each (t, h) in U. Calculating $d \phi_{(t, h)}$ we find that the third row of the second column is 1 , then, as the first two rows of the first column cannot be simultaneously zero we may conclude that $d \phi_{(t, h)}$ is injective.
(3) We show that such a global parametrization cannot exist.

To do this, we show that on no such V the map ϕ can be a bijection (and thus, in particular, a homeomorphism with the image). Fix any h_{0}. Notice that the intersection of V with the line $h=h_{0}$ must be open (in the topology of the line). On the other hand, the image of the line $h=h_{0}$ is the circle $X \cap\{z=h\}$ in \mathbb{R}^{3}. Since there is no continuous bijection between (a union of) open intervals and the unit circle, the assertion follows.
(4) We know that the tangent space at the point $p=\left(x_{0}, y_{0}, z_{0}\right) \in X$ is the orthogonal to the gradient at p of the map G above. Thus, the required tangent plane is given by $\left\langle\nabla G_{p},(x, y, z)\right\rangle=0$, and thus by

$$
x_{0} x+y_{0} y-z_{0} z=0 .
$$

(5) Let us denote by ∂_{t} and ∂_{h} the tangent vectors induced by ϕ corresponding to the coordinates (t, h) on U, where $\phi: U \rightarrow X$ is a parametrization of X at p, see part (2). We have

$$
\partial_{t}=\left(-\sqrt{h^{2}+1} \sin t, \sqrt{h^{2}+1} \cos t, 0\right)
$$

and

$$
\partial_{h}=\left(\frac{h}{\sqrt{h^{2}+1}} \cos t, \frac{h}{\sqrt{h^{2}+1}} \sin t, 1\right)
$$

Thus, we deduce that

$$
\begin{aligned}
& E=\left\langle\partial_{t}, \partial_{h}\right\rangle_{p}=h^{2}+1\left(=x_{0}^{2}+y_{0}^{2}\right) \\
& F=\left\langle\partial_{t}, \partial_{h}\right\rangle_{p}=0 \\
& G=\left\langle\partial_{h}, \partial_{h}\right\rangle_{p}=\frac{h^{2}}{h^{2}+1}+1=\frac{2 h^{2}+1}{h^{2}+1}\left(=\frac{x_{0}^{2}+y_{0}^{2}+z_{0}^{2}}{x_{0}^{2}+y_{0}^{2}}\right) .
\end{aligned}
$$

(6) Since X is a regular surface given as level set of of a regular value of a smooth function, it is orientable. Thus the Gauss map is well defined. We show two ways to compute it.

A first way is to compute $\frac{\partial_{t} \wedge \partial_{h}}{\left\|\partial_{t} \wedge \partial_{h}\right\|}$ at the point $p=\phi\left(t_{0}, h_{0}\right)$. From the expression above of ∂_{t} and ∂_{h} we get

$$
\partial_{t} \wedge \partial_{h}=\left(\sqrt{h^{2}+1} \cos t, \sqrt{h^{2}+1} \sin t,-h\right) .
$$

Substituting x_{0}, y_{0}, z_{0} we find that, at $p=\left(x_{0}, y_{0}, z_{0}\right)$,

$$
\partial_{t} \wedge \partial_{h}=\left(x_{0}, y_{0},-z_{0}\right)
$$

The norm of the above vector is $\sqrt{2 h^{2}+1}=\sqrt{2 z_{0}^{2}+1}=\sqrt{x_{0}^{2}+y_{0}^{2}+z_{0}^{2}}$. Thus the choice of N induced by this basis is

$$
N(p)=N\left(x_{0}, y_{0}, z_{0}\right)=\frac{\left(x_{0}, y_{0},-z_{0}\right)}{\sqrt{x_{0}^{2}+y_{0}^{2}+z_{0}^{2}}}
$$

or

$$
N(p)=N\left(\phi\left(t_{0}, h_{0}\right)\right)=\frac{\left(\sqrt{h^{2}+1} \cos t, \sqrt{h^{2}+1} \sin t,-h\right)}{\sqrt{2 h^{2}+1}},
$$

and the computation is complete.
Another way to compute the Gauss map is to remember that it is given by the (normalized) gradient of the function G above. Since $\nabla G=(2 x, 2 y,-2 z)$, whose norm is $2 \sqrt{x^{2}+y^{2}+z^{2}}$, at the point $p=\left(x_{0}, y_{0}, z_{0}\right) \in X$ we get

$$
N(p)=\frac{\left(x_{0}, y_{0},-z_{0}\right)}{\sqrt{x_{0}^{2}+y_{0}^{2}+z_{0}^{2}}},
$$

which coincides with the result found above (notice that also taking the opposite sign would have given a correct solution).
(7) We need to compute the second derivatives of the coordinates of ϕ. As vectors, we get

$$
\begin{aligned}
\frac{\partial^{2} \phi}{\partial^{2} t} & =\left(-\sqrt{h^{2}+1} \cos t,-\sqrt{h^{2}+1} \sin t, 0\right) \\
\frac{\partial^{2} \phi}{\partial t \partial h} & =\left(-\frac{h}{\sqrt{h^{2}+1}} \sin t, \frac{h}{\sqrt{h^{2}+1}} \cos t, 0\right) \\
\frac{\partial^{2} \phi}{\partial^{2} h} & =\left(\frac{1}{\left(h^{2}+1\right)^{3 / 2}} \cos t, \frac{1}{\left(h^{2}+1\right)^{3 / 2}} \sin t, 0\right)
\end{aligned}
$$

and so, with the expression of $N \circ \phi$ found in item (6), we get

$$
\begin{aligned}
& e=\left\langle N \circ \phi, \frac{\partial^{2} \phi}{\partial^{2} t}\right\rangle=-\frac{h^{2}+1}{\sqrt{2 h^{2}+1}} \\
& f=\left\langle N \circ \phi, \frac{\partial^{2} \phi}{\partial t \partial h}\right\rangle=0 \\
& g=\left\langle N \circ \phi, \frac{\partial^{2} \phi}{\partial^{2} h}\right\rangle=\frac{1}{\left(h^{2}+1\right) \sqrt{2 h^{2}+1}} .
\end{aligned}
$$

Exercise 2 Let $X \subset \mathbb{R}^{3}$ be defined as

$$
X:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2}+1\right\} .
$$

Give an explicit diffeomorphism F between X and $\mathbb{R}^{2} \backslash\{0\}$ (and prove in detail that F is indeed a diffeomorphism).

Solution. Consider the restriction to X of the map $\tilde{F}: \mathbb{R}^{3} \backslash\{x=y=0\} \rightarrow \mathbb{R}^{2}$ given by

$$
\tilde{F}(x, y, z)=\left(\frac{x}{\sqrt{x^{2}+y^{2}}} e^{z}, \frac{y}{\sqrt{x^{2}+y^{2}}} e^{z}\right) .
$$

The image of X is included in $\mathbb{R}^{2} \backslash\{0\}$. We denote by $F: X \rightarrow \mathbb{R}^{2} \backslash\{0\}$ the restriction of \tilde{F} to X. We are going to prove that F gives the desired diffeomorphism.

- F is bijective. This can be proved by a direct computation. One can also observe that, for a given h_{0}, the restriction of F to the set $X \cap\left\{z=h_{0}\right\}$ is a bijection with the circle of center the origin and radius $e^{h_{0}}$. Changing h_{0} one sees that F covers bijectively all circles of positive radius centered at the origin.
- Let us prove that F is C^{∞}. If $\phi: U \rightarrow X$ is a local parametrization obtained as in Exercise 1, we have

$$
F \circ \phi(t, u)=\left(\cos t, \sin t, e^{h}\right),
$$

which is C^{∞} as required (we use here the identity map as a parametrization on the image).

- Let us prove that the inverse of F is C^{∞}. We can use polar coordinates on (an open subset of) $\mathbb{R}^{2} \backslash\{0\}$. This means considering the parametrization ψ of open balls in $\mathbb{R}^{2} \backslash\{0\}$ given by $\psi(\theta, r)=(r \cos t, r \sin t)$. Using this parametrization, we need to check that the map

$$
\phi^{-1} \circ F^{-1} \circ \psi(\theta, r)
$$

is C^{∞}. But we have

$$
\begin{equation*}
\phi^{-1} \circ F^{-1} \circ \psi(\theta, r)=\phi^{-1} \circ F^{-1}(r \cos \theta, r \sin \theta) . \tag{1}
\end{equation*}
$$

In order to compute $F^{-1}(r \cos \theta, r \sin \theta)$ by the definition of F we need to solve the system

$$
\left\{\begin{array}{l}
\frac{x}{\sqrt{x^{2}+y^{2}}} e^{z}=r \cos \theta \\
\frac{y}{\sqrt{x^{2}+y^{2}}} e^{z}=r \sin \theta \\
x^{2}+y^{2}=z^{2}-1
\end{array}\right.
$$

where the last identities correspond to requiring that the solution must give a point of X.
Taking the sum of the square of the first two identities, we get $e^{2 z}=r^{2}$, which gives $z=\log r$. Substituting this and the last identity in the first two, we get

$$
\left\{\begin{array}{l}
\frac{x}{\sqrt{(\log r)^{2}+1}}=\cos \theta \\
\frac{y}{\sqrt{(\log r)^{2}+1}}=\sin \theta
\end{array}\right.
$$

Finally, we get $(x, y, z)=\left(\sqrt{(\log r)^{2}+1} \cos t, \sqrt{(\log r)^{2}+1} \sin t, \log r\right)$. Thus, we can continue the computation in (1), getting

$$
\phi^{-1} \circ F^{-1} \circ \psi(\theta, r)=\phi^{-1}\left(\sqrt{(\log r)^{2}+1} \cos \theta, \sqrt{(\log r)^{2}+1} \sin \theta, \log r\right)
$$

From the definition of ϕ is now follows that

$$
\phi^{-1} \circ F^{-1} \circ \psi(\theta, r)=(\theta, \log r)
$$

which is C^{∞}. This concludes the proof that F^{-1} is C^{∞}.

Exercise 3 Let $S \subset \mathbb{R}^{3}$ be a surface with a Gauss map $N: S \rightarrow S^{2}$. Prove that $d N \equiv 0$ if and only if S is contained in a plane.

Proof. The condition $d N \equiv 0$ means that the Gauss map N is constant. Since the value $N(p)$ at a point $p \in S$ gives the orthogonal direction to the tangent plane, we see that $d N \equiv 0$ if and only if the tangent plane is constant.

If S is contained in a plane π, all curves in S are contained in π, and thus all tangent vectors are contained in the plane π_{0} parallel to π passing through the origin. As a consequence, the tangent plane T_{p} is included in π_{0} for all $p \in S$, and thus the tangent plane is constant.

Conversely, assume that the tangent plane is constantly equal to a plane π_{0}. We assume for simplicity that the origin of \mathbb{R}^{3} is contained in the surface S (the general case follows by just a translation of the problem). Moreover, we can assume that $\pi_{0}=\{z=0\}$, since again the general case just follows by applying a rotation.

We want to show that $S \subseteq \pi_{0}$. It is enough to show the following: for every p, q in the same parametrizing chart, any curve $\gamma:[0,1] \rightarrow R^{3}$, with support contained in S, and such that $\sigma(0)=p$ and $\sigma(1)=q$, lies π_{0} (the general case follows by joining any two points in the surface by a finite number of curves as above). We can again assume for simplicity that p is the origin. For every $t \in[0,1]$ we have

$$
\sigma(t)=\int_{0}^{t} \sigma^{\prime}(s) d s
$$

Now, since $T_{\sigma(s)}=\pi_{0}$, the vector $\sigma^{\prime}(s)$ has no component in the vertical direction, and it follows from the identity above that $\sigma(t) \in \pi_{0}$ for all $t \in[0,1]$, as required.

