
DIFFERENTIAL GEOMETRY

HOME ASSIGNMENT 1

Please submit your work (by email or on paper) by 10:00 on Monday October 21 to any of the course
lecturers.

Exercise 1 Let k, n ≥ 1 be integers. Let σk,n : [0, 2kπ]→ R2 be given by

σk,n(t) =

 (1 + k
n) cos t− k

n cos
(
(1 + n

k )t
)

(1 + k
n) sin t− k

n sin
(
(1 + n

k )t
)
 .

(1) Prove that σk,n is a closed curve.
(2) Compute the length of σk,n.

Hint : You may need to apply the identities

(A) cos(α− β) = cosα cosβ − sinα sinβ;
(B) sin2

(
α
2

)
= 1−cosα

2 ;

and split the integral over [0, 2kπ] into integrals over intervals where sin
(
nt
2k

)
is positive.

Exercise 2 Let σ : [−2π, 2π]→ R3 be the curve given by

σ(t) = (1 + cos t, sin t, 2 sin(t/2)) .

(1) Prove that σ is regular.
(2) Prove that the support of σ is the intersection of the sphere of radius 2 centred at the origin

with the cylinder having equation (x− 1)2 + y2 = 1.

Exercise 3 Let γ : R→ R3 be defined by

γ(t) = (a cosh t, b sinh t, at) .

(1) Calculate the arc length of γ.
(2) Calculate the curvature of γ.
(3) Calculate the torsion of γ.
(4) Prove that if a = b = 1 then the curvature is equal to the torsion for every value of the

parameter t ∈ R.

Hint : you may need to apply the following identity

(C) cosh sinh−1(s) =
√

1 + s2

Exercise 4 Let I ⊂ R be an open interval and η : I → R3 be a biregular curve parameterized by
arc length. Let κ(s) and τ(s) denote the curvature and the torsion of the curve η at s, respectively.

(1) Prove that κ ≡ ±τ if and only if there exist a nonzero versor v such that 〈t,v〉 ≡ 〈b,v〉.
(2) Furthermore, prove that if κ ≡ ±τ then 〈t,v〉 is constant.
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Exercise 1 Let k, n ≥ 1 be integers. Let σk,n : [0, 2kπ]→ R2 be given by

σk,n(t) =

 (1 + k
n) cos t− k

n cos
(
(1 + n

k )t
)

(1 + k
n) sin t− k

n sin
(
(1 + n

k )t
)
 .

(1) Prove that σk,n is a closed curve.
(2) Compute the length of σk,n.

Hint : You may need to apply the identities

(A) cos(α− β) = cosα cosβ − sinα sinβ;
(B) sin2

(
α
2

)
= 1−cosα

2 ;

and split the integral over [0, 2kπ] into integrals over intervals where sin
(
nt
2k

)
is positive.

Solution. For the first item, it is enough to check that σk,n(0) = σk,n(2kπ). The verification is
immediate since n

k = 2kπ = 2nπ is a multiple of 2π.
Let us compute the length of σk,n. First of all, we need to compute the norm of σ′(t). Writing

σk,n(t) = (x(t), y(t)) we have
∥∥∥σ′k,n(t)

∥∥∥ =
√

(x′(t))2 + (y′(t))2. A direct computation gives

∥∥σ′k,n(t)
∥∥ =

(
1 +

k

n

)√
2− 2 sin t sin

((
1 +

n

k

)
t
)
− 2 cos t cos

((
1 +

n

k

)
t
)
.

Notice that it is possible to directly sum terms of the form cos2 and sin2 to simplify the computa-
tions.

Using the identity (A) above with α = (1 + n
k )t and β = t (and recalling that − sin t = sin(−t)

and cos t = cos(−t)) we get ∥∥σ′k,n(t)
∥∥ =

(
1 +

k

n

)√
2− 2 cos

(n
k
t
)
.

Applying identity (B) with α = nt
k then gives

∥∥σ′k,n(t)
∥∥ =

(
1 +

k

n

)
2

√
sin

(
nt

2k

)2

= 2

∣∣∣∣sin(nt2k

)∣∣∣∣ .
We thus get that the length L(σk,n) of σk,n is given by

L(σk,n) = 2

(
1 +

k

n

)∫ 2kπ

0

∣∣∣∣sin(nt2k

)∣∣∣∣ dt.
The argument of sin in the last integral is periodic of period 2k

n 2π = 4kπ
n . Because of the absolute

value, the argument is periodic of period 2kπ
n . Thus we can split the integral above in n integrals
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2 HOME ASSIGNMENT 1 (SOLUTIONS)

over [0, 2kπn ] and get

L(σk,n) = 2

(
1 +

k

n

)
n

∫ 2kπ/n

0
sin

(
nt

2k

)
dt.

In the last equation we did non need to write the absolute value, since now sin is positive on the
interval.

Computing the integral we finally get

L(σk,n) = 2

(
1 +

k

n

)
n

2k

n
(cos(0)− cosπ) = 8k

(
1 +

k

n

)
,

and the solution is complete. �

Exercise 2 Let σ : [−2π, 2π]→ R3 be the curve given by

σ(t) = (1 + cos t, sin t, 2 sin(t/2)) .

(1) Prove that σ is regular.
(2) Prove that the support of σ is the intersection of the sphere of radius 2 centred at the origin

with the cylinder having equation (x− 1)2 + y2 = 1.

Solution. (1) We have

σ′(t) = (− sin(t), cos t, cos(t/2))

for every t. For every t, at least one of the first two coordinates is non zero. Thus, the
vector σ′(t) is never zero and the curve is regular.

(2) Let us denote by S the sphere and by C the cylinder given in the statement. We denote by
(x(t), y(t), z(t)) the coordinates of σ(t).

We first prove that the support of σ is included in S ∩ C. For every t, we have

x(t)2 + y(t)2 + z(t)2 = (1 + cos(t))2 + sin(t)2 + 4 sin(t/2)2

= 2 + 2 cos(t) + 4 sin(t/2)2 = 4

where in the last step we applied the identity cos(2θ) = 1 − 2 sin(θ)2 with θ = t/2. This
proves that the support of σ is included in S. We also have

(x(t)− 1)2 + y(t)2 = (1 + cos(t)2 − 1) + sin(t)2 = 1,

which proves that σ(t) ∈ C for every t. Summing up, we have that the support of σ is
contained in S ∩ C, as desired.

Let us prove the opposite inclusion. Let p = (x0, y0, z0) be any point in S ∩ C. We
need to prove the existence of a t ∈ [−2π, 2π] such that σ(t) = p. We start considering the
system {

cos t = x0 − 1

sin t = y0.

Since p ∈ C, we have (x0−1)2 +y20 = 1. Thus it is possible to find a solution for the system
above. Notice that we actually have two solutions in the interval of definition [−2π, 2π] of
σ. Let us denote them by t0 ∈ [0, 2π] and t1 = t0 − 2π ∈ [−2π, 0]. We need to show that
one among z(t0) = 2 sin(t0/2) and z(t1) = 2 sin(t1/2) is equal to z0. Notice that these two
quantities have opposite sign.

Notice that, given x0 and z0, only two possibilities are allowed for z0, and also these
choices differ by the sign. More precisely, we have

z0 = ±
√

4− x20 − y20
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where ± denotes the two possible choices. The two possible choices z(t0) and z(t2) satisfy
the above equality (and are the two possible choices) when substituting the values for x0
and y0 found above. The proof is completed.

�

Exercise 3 Let γ : R→ R3 be defined by

γ(t) = (a cosh t, b sinh t, at) .

(1) Calculate the arc length of γ.
(2) Calculate the curvature of γ.
(3) Calculate the torsion of γ.
(4) Prove that if a = b = 1 then the curvature is equal to the torsion for every value of the

parameter t ∈ R.

Hint : you may need to apply the following identity

(C) cosh sinh−1(s) =
√

1 + s2

Proof. (1) We have γ′(t) = (a sinh t, b cosh t, a). Thus∫ s

s0

∥∥γ′(t)∥∥ dt =

∫ s

s0

√
a2 sinh2(t) + b2 cosh2 t+ a2dt

=

∫ s

s0

√
(a2 + b2) cosh2(t)dt =

√
a2 + b2

∫ s

s0

|cosh t| dt

We take s0 and consider positive s (the opposite case is analogous). We get∫ s

s0

∥∥γ′(t)∥∥ dt =
√
a2 + b2(sinh(s)− sinh(s0)).

(2) For the curvature we employ the formula

κ(t) =
‖γ′(t) ∧ γ′′(t)‖
‖γ′(t)‖3

.

We calculate that

γ′′(t) = (a cosh t, b sinh t, 0),

and so

γ′(t) ∧ γ′′(t) = (−ab sinh t, a2 cosh t,−ab).
Thus

‖γ′(t) ∧ γ′′(t)‖ =
√
a2b2 sinh2 t+ a42t+ a2b2 = a

√
a2 + b2 cosh t.

Finally, we obtain

κ(t) =
a

(a2 + b2) cosh2 t
.

(3) For the torsion we employ the formula

τ(t) =
〈γ′(t) ∧ γ′′(t)〉
‖γ′(t) ∧ γ′′(t)‖2

.

We calculate that

γ′′′(t) = (a sinh t, bt, 0).

Thus

〈γ′(t) ∧ γ′′(t)〉 = a2b,
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and we obtain

τ(t) =
b

(a2 + b2) cosh t
.

(4) Finally, we insert a = b = 1 in the expressions of the curvature and the torsion above to
obtain

κ(t) =
1

2 cosh t
= τ(t).

�

Exercise 4 Let I ⊂ R be an open interval and η : I → R3 be a biregular curve parameterized by
arc length. Let κ(s) and τ(s) denote the curvature and the torsion of the curve η at s, respectively.

(1) Prove that κ ≡ ±τ if and only if there exist a constant nonzero versor v such that 〈t,v〉 ≡
〈b,v〉.

Proof. First suppose that there exists a non-zero versor v which is constant such that

〈t,v〉 = 〈b,v〉.
Differentiating the above with respect to s and using that v is constant we obtain

〈ṫ,v〉 = 〈ḃ,v〉,
from which we obtain

〈(κ+ τ)n,v〉 = 0.

This implies that, for any given s ∈ I, (at least) one of the following identities must hold:

(1) τ(s) = −k(s),
(2) 〈n(s),v〉 = 0

Let us prove that if the second holds on an interval I ′ ⊂ I then τ(s) = k(s) on I ′. The assertion
then follows since the ratio τ(s)/k(s) must be continuous.

Recall that t,n,b form an orthonormal basis for all s ∈ I. Since 〈n,v〉 = 0 on I ′, we must have
v = A(s)t+B(s)b for some functions A(s) and B(s). Since v is constant, by differentiating we get

0 = Ȧ(s)t +A(s)ṫ + Ḃ(s)b +B(s)ḃ = Ȧ(s)t + Ḃ(s)b + (kA(s)− τB(s))n.

Thus kA(s) − τB(s) = 0. But the assumption 〈t,v〉 = 〈b,v〉 implies that A(s) = B(s), so that
τ(s) = k(s), as desired.

For the opposite inclusion, let us consider the two cases separately.
If τ ≡ k, we have

ṫ = kn = τn = −ḃ,
which means that the vector v := t + b is constant. Moreover, since 〈t,b〉 = 0, we have

〈t,v〉 = 〈t, t + b〉 = 1 = 〈b, t + b〉 = 〈b,v〉
which proves the statement in this case.

Assume now that τ ≡ −k. In this case, we get t − b = 0, so that the vector w := t − b is
constant. It is then enough to take v orthogonal to w. Indeed, we have 〈t−b,v〉 = 〈w,v〉 = 0, as
desired.

�
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Please submit your work by email by 12.00 on Monday October 28 to all the course lecturers.

Exercise 1 Let X ⊂ R3 be defined as

X :=
{

(x, y, z) ∈ R3 : x2 + y2 = z2 + 1
}

and let φ : R2 → R3 be given by

φ(t, h) := (
√
h2 + 1 cos t,

√
h2 + 1 sin t, h)

where
√
· denotes the positive square root. Let p := (x0, y0, z0) be any given point in X.

(1) Prove that X is a regular surface.
(2) Prove that there exists U ⊂ R2 such that the restriction of φ to U is a local parametrization

of X in p.
(3) Prove or disprove the following: there exists V ⊂ R2 such that the restriction of φ to V is

a global parametrization of X.
(4) Compute the tangent space of X at p.
(5) Compute the metric coefficients of the first fundamental form of X at p with respect to φ.
(6) Prove that a Gauss map N : X → S2 of X is well defined. Compute N(p).
(7) Compute the form coefficients of the second fundamental form of X at p with respect to φ.

Exercise 2 Let X ⊂ R3 be defined as

X :=
{

(x, y, z) ∈ R3 : x2 + y2 = z2 + 1
}
.

Give an explicit diffeomorphism F between X and R2 \ {0} (and prove in detail that F is indeed
a diffeomorphism).

Exercise 3 Let S ⊂ R3 be a surface with a Gauss map N : S → S2. Prove that dN ≡ 0 if and
only if S is contained in a plane.
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Please submit your work by email by 12.00 on Tuesday October 29 to all the course lecturers.

Exercise 1 Let X ⊂ R3 be defined as

X :=
{

(x, y, z) ∈ R3 : x2 + y2 = z2 + 1
}

and let φ : R2 → R3 be given by

φ(t, h) := (
√
h2 + 1 cos t,

√
h2 + 1 sin t, h)

where
√
· denotes the positive square root. Let p := (x0, y0, z0) be any given point in X.

(1) Prove that X is a regular surface.
(2) Prove that there exists U ⊂ R2 such that the restriction of φ to U is a local parametrization

of X in p.
(3) Prove or disprove the following: there exists V ⊂ R2 such that the restriction of φ to V is

a global parametrization of X.
(4) Compute the tangent space of X at p.
(5) Compute the metric coefficients of the first fundamental form of X at p with respect to φ.
(6) Prove that a Gauss map N : X → S2 of X is well defined. Compute N(p).
(7) Compute the form coefficients of the second fundamental form of X at p with respect to φ.

Solution. (1) X is the zero level of the function G : R3 → R given by G(x, y, z) = x2+y2−z2−1.
Since the preimage of a regular value is a regular surface, it is enough to prove that 0 is a
regular value for G. Recall that this means that no point q in the preimage of 0 is critical,
i.e., satisfies ∇G = 0. Let us compute the gradient of G. We have

∇G(x, y, z) = (2x, 2y,−2z).

The only point in R3 where ∇G vanishes is thus the origin. Since G(O) = −1, the value 0
is regular and X is a regular surface.

(2) As X the zero level set of the function G and 0 is regular value for G it suffices to check that
φ(U) ⊂ X, φ|U injective and d(φ|U )t,h injective for all (t, h) ∈ U in order to conclude that
φ|U is a local parametrization of X. It is immediate to check that, for all t, h, the image of
φ is contained in X. Also, for every p ∈ X there exists (t0, h0) such that p = φ(t0, h0). It is
enough to take for U any sufficiently small neighbourhood U of (t0, h0) with the property
that φ is injective on U . Notice that, for instance, we can take the set U = (t0−π, t0+π)×R.
It is then straight forward to check that dφ(t,h) is injective for each (t, h) in U . Calculating
dφ(t,h) we find that the third row of the second column is 1, then, as the first two rows of
the first column cannot be simultaneously zero we may conclude that dφ(t,h) is injective.

(3) We show that such a global parametrization cannot exist.
To do this, we show that on no such V the map φ can be a bijection (and thus, in

particular, a homeomorphism with the image). Fix any h0. Notice that the intersection
of V with the line h = h0 must be open (in the topology of the line). On the other hand,
the image of the line h = h0 is the circle X ∩ {z = h} in R3. Since there is no continuous
bijection between (a union of) open intervals and the unit circle, the assertion follows.
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1



2 HOME ASSIGNMENT 2 (SOLUTIONS)

(4) We know that the tangent space at the point p = (x0, y0, z0) ∈ X is the orthogonal to
the gradient at p of the map G above. Thus, the required tangent plane is given by
〈∇Gp, (x, y, z)〉 = 0, and thus by

x0x+ y0y − z0z = 0.

(5) Let us denote by ∂t and ∂h the tangent vectors induced by φ corresponding to the coordinates
(t, h) on U , where φ : U → X is a parametrization of X at p, see part (2). We have

∂t =
(
−
√
h2 + 1 sin t,

√
h2 + 1 cos t, 0

)
and

∂h =

(
h√

h2 + 1
cos t,

h√
h2 + 1

sin t, 1

)
Thus, we deduce that

E = 〈∂t, ∂h〉p = h2 + 1
(
= x20 + y20

)
F = 〈∂t, ∂h〉p = 0

G = 〈∂h, ∂h〉p =
h2

h2 + 1
+ 1 =

2h2 + 1

h2 + 1

(
=
x20 + y20 + z20
x20 + y20

)
.

(6) Since X is a regular surface given as level set of of a regular value of a smooth function, it
is orientable. Thus the Gauss map is well defined. We show two ways to compute it.

A first way is to compute ∂t∧∂h
‖∂t∧∂h‖ at the point p = φ(t0, h0). From the expression above

of ∂t and ∂h we get

∂t ∧ ∂h =
(√

h2 + 1 cos t,
√
h2 + 1 sin t,−h

)
.

Substituting x0, y0, z0 we find that, at p = (x0, y0, z0),

∂t ∧ ∂h = (x0, y0,−z0).

The norm of the above vector is
√

2h2 + 1 =
√

2z20 + 1 =
√
x20 + y20 + z20 . Thus the choice

of N induced by this basis is

N(p) = N(x0, y0, z0) =
(x0, y0,−z0)√
x20 + y20 + z20

or

N(p) = N
(
φ(t0, h0)

)
=

(√
h2 + 1 cos t,

√
h2 + 1 sin t,−h

)
√

2h2 + 1
,

and the computation is complete.
Another way to compute the Gauss map is to remember that it is given by the (nor-

malized) gradient of the function G above. Since ∇G = (2x, 2y,−2z), whose norm is

2
√
x2 + y2 + z2, at the point p = (x0, y0, z0) ∈ X we get

N(p) =
(x0, y0,−z0)√
x20 + y20 + z20

,

which coincides with the result found above (notice that also taking the opposite sign would
have given a correct solution).
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(7) We need to compute the second derivatives of the coordinates of φ. As vectors, we get

∂2φ

∂2t
=
(
−
√
h2 + 1 cos t,−

√
h2 + 1 sin t, 0

)
∂2φ

∂t∂h
=

(
− h√

h2 + 1
sin t,

h√
h2 + 1

cos t, 0

)
∂2φ

∂2h
=

(
1

(h2 + 1)3/2
cos t,

1

(h2 + 1)3/2
sin t, 0

)
and so, with the expression of N ◦ φ found in item (6), we get

e = 〈N ◦ φ, ∂
2φ

∂2t
〉 = − h2 + 1√

2h2 + 1

f = 〈N ◦ φ, ∂
2φ

∂t∂h
〉 = 0

g = 〈N ◦ φ, ∂
2φ

∂2h
〉 =

1

(h2 + 1)
√

2h2 + 1
.

�

Exercise 2 Let X ⊂ R3 be defined as

X :=
{

(x, y, z) ∈ R3 : x2 + y2 = z2 + 1
}
.

Give an explicit diffeomorphism F between X and R2 \ {0} (and prove in detail that F is indeed
a diffeomorphism).

Solution. Consider the restriction to X of the map F̃ : R3 \ {x = y = 0} → R2 given by

F̃ (x, y, z) = (
x√

x2 + y2
ez,

y√
x2 + y2

ez).

The image of X is included in R2 \ {0}. We denote by F : X → R2 \ {0} the restriction of F̃ to X.
We are going to prove that F gives the desired diffeomorphism.

• F is bijective. This can be proved by a direct computation. One can also observe that, for
a given h0, the restriction of F to the set X ∩ {z = h0} is a bijection with the circle of
center the origin and radius eh0 . Changing h0 one sees that F covers bijectively all circles
of positive radius centered at the origin.
• Let us prove that F is C∞. If φ : U → X is a local parametrization obtained as in Exercise

1, we have

F ◦ φ(t, u) = (cos t, sin t, eh),

which is C∞ as required (we use here the identity map as a parametrization on the image).
• Let us prove that the inverse of F is C∞. We can use polar coordinates on (an open subset

of) R2 \ {0}. This means considering the parametrization ψ of open balls in R2 \ {0} given
by ψ(θ, r) = (r cos t, r sin t). Using this parametrization, we need to check that the map

φ−1 ◦ F−1 ◦ ψ(θ, r)

is C∞. But we have

(1) φ−1 ◦ F−1 ◦ ψ(θ, r) = φ−1 ◦ F−1(r cos θ, r sin θ).
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In order to compute F−1(r cos θ, r sin θ) by the definition of F we need to solve the system
x√
x2+y2

ez = r cos θ

y√
x2+y2

ez = r sin θ

x2 + y2 = z2 − 1,

where the last identities correspond to requiring that the solution must give a point of X.
Taking the sum of the square of the first two identities, we get e2z = r2, which gives

z = log r. Substituting this and the last identity in the first two, we get
x√

(log r)2+1
= cos θ

y√
(log r)2+1

= sin θ.

Finally, we get (x, y, z) =
(√

(log r)2 + 1 cos t,
√

(log r)2 + 1 sin t, log r
)

. Thus, we can con-

tinue the computation in (1), getting

φ−1 ◦ F−1 ◦ ψ(θ, r) = φ−1
(√

(log r)2 + 1 cos θ,
√

(log r)2 + 1 sin θ, log r
)
.

From the definition of φ is now follows that

φ−1 ◦ F−1 ◦ ψ(θ, r) = (θ, log r)

which is C∞. This concludes the proof that F−1 is C∞.

�

Exercise 3 Let S ⊂ R3 be a surface with a Gauss map N : S → S2. Prove that dN ≡ 0 if and
only if S is contained in a plane.

Proof. The condition dN ≡ 0 means that the Gauss map N is constant. Since the value N(p) at a
point p ∈ S gives the orthogonal direction to the tangent plane, we see that dN ≡ 0 if and only if
the tangent plane is constant.

If S is contained in a plane π, all curves in S are contained in π, and thus all tangent vectors are
contained in the plane π0 parallel to π passing through the origin. As a consequence, the tangent
plane Tp is included in π0 for all p ∈ S, and thus the tangent plane is constant.

Conversely, assume that the tangent plane is constantly equal to a plane π0. We assume for
simplicity that the origin of R3 is contained in the surface S (the general case follows by just a
translation of the problem). Moreover, we can assume that π0 = {z = 0}, since again the general
case just follows by applying a rotation.

We want to show that S ⊆ π0. It is enough to show the following: for every p, q in the same
parametrizing chart, any curve γ : [0, 1]→ R3, with support contained in S, and such that σ(0) = p
and σ(1) = q, lies π0 (the general case follows by joining any two points in the surface by a finite
number of curves as above). We can again assume for simplicity that p is the origin. For every
t ∈ [0, 1] we have

σ(t) =

∫ t

0
σ′(s)ds.

Now, since Tσ(s) = π0, the vector σ′(s) has no component in the vertical direction, and it follows
from the identity above that σ(t) ∈ π0 for all t ∈ [0, 1], as required. �


