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“The concept of dog does not bark.”

Spinoza

Charles Darwin 1809− 1882

A mathematician is a blind
man in a dark room looking for
a black cat which isn’t there

Charles Darwin

Hermann Weyl 1885− 1955

In these days the angel of topol-
ogy and the devil of abstract al-
gebra fight for the soul of every
individual discipline of mathe-
matics.

Hermann Weyl

Solomon Lefschetz 1884− 1972

If it’s just turning the crank it’s
algebra, but if it’s got an idea in
it, it’s topology.

Solomon Lefschetz
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Leonhard Euler was a pioneering Swiss mathematician and physi-
cist. He made important discoveries in fields as diverse as infinitesi-
mal calculus, analysis, graph theory, number theory, applied math-
ematics, astronomy, physics, and logic. In 1736, Euler solved the
problem known as the Seven Bridges of Königsberg. Euler also dis-
covered the formula V −E + F = 2 relating the number of vertices,
edges, and faces of a convex polyhedron, and hence of a planar graph.
The constant in this formula is now known as the Euler characteristic
for the graph (or other mathematical object), and is related to the
genus of the object. The study and generalization of this formula,
specifically by Cauchy and L’Huillier, is at the origin of topology.

Jules Henri Poincaré was a French mathematician, the-
oretical physicist, engineer, and a philosopher of science.
He is often described as a polymath, and in mathematics
as The Last Universalist, since he excelled in all fields of
the discipline as it existed during his lifetime. As a mathe-
matician and physicist, he made many original fundamental
contributions to pure and applied mathematics, mathemat-
ical physics, and celestial mechanics. He was responsible
for formulating the Poincaré conjecture, which was one of
the most famous unsolved problems in mathematics until it
was solved in 2002-2003. In his research on the three-body
problem, Poincaré became the first person to discover a
chaotic deterministic system which laid the foundations of
modern chaos theory. He is also considered to be one of the
founders of the field of topology.

Grigori Yakovlevich Perelman is a Russian mathematician
who has made landmark contributions to Riemannian geom-
etry and geometric topology. In 2003, he proved Thurston’s
geometrization conjecture. This consequently solved in the af-
firmative the Poincaré conjecture, posed in 1904, which before
its solution was viewed as one of the most important and diffi-
cult open problems in topology. In August 2006, Perelman was
awarded the Fields Medal. In March 2010, the Clay Mathemat-
ics Institute hereby awards the Millennium Prize for resolution
of the Poincaré conjecture to Grigoriy Perelman.
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Introduction

Although it exists many textbooks and lecture notes on Topology, we decided to write one more.
The origin was back to 2005 when a master of mathematics was established in Cambodia. Among
other courses, the need for a basic course in Topology seemed to be necessary. These lecture
notes are a very extended version of the courses given in this Cambodian master of mathematics.

The content is classical, it covers, in the first part, the main topics of the general topology or
so called point-set topology. In a second part, we introduce the notion of continuous deforma-
tions and covering spaces which is an introduction to homotopy theory through the fundamental
group also called Poincaré group.
Topology needs an ability with the notions of the set theory and we recall the basic notions with
some focus on the duality. Duality plays an important role in these lecture notes. This concept
is not clearly defined but it is introduced through many examples. The reader has not to confuse
duality and negation. Moreover, duality is a way to get a better global view.
Even if the set theory plays an important role in topology, it is just a tool. The basic idea is to
express the notion of nearness. In the metric spaces, nearness is measured by the distance, but
there are many situations where there is no such a measure. The nearness is characterized by
the open sets and the set theory is the tool.

General Topology was a very active domain of researches during the first half of the last
century. Many mathematicians2 contributed to construct this beautiful theory and the reader
will meet some of them along this pages. We have selected three mathematicians to describe
the evolution of the Topology. Euler as a precursor, Poincaré who started the very active time
of researches and Perelman who solved in the early years 2000, the most famous conjecture in
Topology due to Poincaré one century earlier .

Every simply connected, closed 3-manifold is homeomorphic to the 3-sphere.

General Topology is an important and necessary tool in almost all the other fields of mathe-
matics. It is not a domain of research, mathematicians agreed to say that this theory is completed.
However, due to the need to understand many problems arising from our world being more and
more complex, new active domains of researches appeared recently: computational topology and
geometry. Roughly speaking, it consists to study continuous objects with discrete processes.
Topology has also some surprising applications and we cannot resist to mention the Nobel Prize
in Physics 2016. The Nobel Prize in Physics 2016 was divided, one half awarded to David J.

2partial biographies from wikipedia
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Thouless, the other half jointly to F. Duncan M. Haldane and J. Michael Kosterlitz “for theoret-
ical discoveries of topological phase transitions and topological phases of matter”.
The three Laureates’ use of topological concepts in physics was decisive for their discoveries.
Topology is a branch of mathematics that describes properties that change step-wise. With
modern topology as a tool, this year’s Laureates presented surprising results, which have opened
up new fields of research and led to the creation of new and important concepts within several
areas of physics.
Topology describes the properties that remain intact when an object is stretched, twisted or
deformed, but not if it is torn apart. Topologically, a sphere and a bowl belong to the same
category, because a spherical lump of clay can be transformed into a bowl. However, a bagel
with a hole in the middle and a coffee cup with a hole in the handle belong to another category;
they can also be remodelled to form each other’s shapes. Topological objects can thus contain
one hole, or two, or three, or four... but this number has to be an integer. This turned out to
be useful in describing the electrical conductance found in the quantum Hall effect, which only
changes in steps that are exact multiples of an integer.

The first part of these lecture notes will concern the so-called general topology, i.e. open and
closed sets, separabilities axioms, limits, continuous maps, topological constructions, topological
properties and complete metric spaces. However, topology needs to be familiar with set theory.
So, we start by giving a short but important summary of set theory.
In a second part, we introduce some notions of continuous deformations, i.e. homotopy and we
define the fundamental group, also called Poincaré group, of a topological space. The Seifert-Van
Kampen theorem will be proved and we will give a presentation of the covering spaces.

Here are some books that are my references for these lecture notes. This is far from a
bibliography.

• Bourbaki. Topologie Générale Ch. 1-4. Springer, 2007.

• J. Dugundji. Topology. Allyn and Bacon, Boston, 1966.

• J. L. Kelley. General Topology Graduate Texts in Maths. 27, Springer, 1955.

• J.R. Munkres. Topology. Pearson Prentice Hall, 2003.

• Ryszard Engelking General Topology Heldermann Verlag Berlin, 1989.

To make shorter, the author uses the following abbreviations:

• “w.r.t.” for “with respect to”

• “iff” for “if and only if”.

I use the notation ]a, b[ for the open interval (a, b).
Even if many misprints were corrected, it certainly remains many of them. All your remarks,
comments are welcomed.
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Chapter 1
“Naive” Set Theory

This is a short introduction of the set theory from the “naive” point of view, i.e. we don’t define
the notions of elements and sets. In other words, we don’t construct the set theory from axioms.

1.1 Preliminary
The fundamental principle consists to say that, given a proposition A, then either A is true or
the negation, nonA, of A is true, and only one is possible. It is called the law of excluded
middle.
Let A and B be two propositions, we define the propositions

• (A or B) which is true only if either A is true or B is true.

• (A and B) which is true only if both A and B are true.

The proposition A =⇒ B means (nonA or B). If A is true, then B is true. But if nonA is true,
then either B can be true or nonB can be true.
Boolean Algebra. In Boolean algebra, a proposition A is true iff its value is 1 and 0 iff it is
false. The basic operations of Boolean calculus are as follows:

•
A nonA
0 1
1 0

A B A ou B
0 0 0
0 1 1
1 0 1
1 1 1

A B A et B
0 0 0
0 1 0
1 0 0
1 1 1

A B A =⇒ B
0 0 1
0 1 1
1 0 0
1 1 1

1.2 Sets. Elements
Modern topology depends strongly on the ideas of set theory, developed by Georg Cantor.1
We will only introduce a naive point of view.

1Georg Ferdinand Ludwig Philipp Cantor, (1845-1918), was a German mathematician, best known as the
inventor of set theory. Cantor established the importance of one-to-one correspondence between the members of
two sets, defined infinite and well-ordered sets. He defined the cardinal and ordinal numbers and their arithmetic.
Cantor’s work is of great philosophical interest, a fact of which he was well aware.
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CHAPTER 1. “NAIVE” SET THEORY

The first words are set and element.
A set is a collection of elements (Notice that this is not a definition). We denote x ∈ X to say
that x is an element of the set X.
Here are some well known examples: N,Z,Q,R,C.
A set can be described either by the list of all its elements, X = {x, y, . . .} or by a property P ,
X = {x | P (x)}.
Example and definition: Let X be a set. Define ∅X = {x ∈ X | x 6= x} which is called the
empty set defined by X. Notice that ∅X has no element.
Let X be a set. A subset Y of X denoted Y ⊂ X is the set defined by (x ∈ Y ⇒ x ∈ X).
Equality of sets. X = Y iff X ⊂ Y and Y ⊂ X.

Remark 1.2.1. • ∅X ⊂ X for any set X.

• ∅X = ∅Y for any sets X,Y , (x ∈ ∅X ⇒ P (x) for any x and any property P ).
Thus we can write ∅ for the unique empty set. So there exists a unique empty set ∅ and
∅ ⊂ X for any set X.

What can we say about the collection of all sets?
Suppose there exists a set X whose elements are all the sets. Then Y = {A ∈ X | A /∈ A} is a
subset of X so a set. Hence, either Y ∈ Y , so Y /∈ Y by definition of Y , or Y /∈ Y , so Y ∈ Y ,
also by definition of Y which is a contradiction.
We can summarize by saying that there exist two types of collections: classes and sets. The
class X is called set if there is a class X such that X ∈ X . This approach is intuitive and naive.
An exposition of Set Theory requires more precision. There are several different axiomatic set
theories, each having technical advantages and shortcomings.

1.2.1 Intersection & Union
Let X and Y be two sets. Then we define their union

X ∪ Y = {a | a ∈ X or a ∈ Y }

and their intersection
X ∩ Y = {a | a ∈ X and a ∈ Y }.

More generally, let Xi, i ∈ I be a family of sets. We define their union as⋃
i∈I

Ai = {x | ∃i ∈ I such that x ∈ Ai}

and their intersection as ⋂
i∈I

Ai = {x | ∀i ∈ I, x ∈ Ai}.

Distributivity (De Morgan’s laws2):

(X ∩ Y ) ∪ Z = (X ∪ Z) ∩ (Y ∪ Z) and (X ∪ Y ) ∩ Z = (X ∩ Z) ∪ (Y ∩ Z).

Remark 1.2.2. Notice the “similarity” between the definitions and the properties of union and
intersection. It will be called duality.
To permute ∪ and ∩ means to permute “or” and “and”, ∃ and ∀.

2Augustus De Morgan (27 June 1806 - 18 March 1871) was a British mathematician and logician. He formulated
De Morgan’s laws and introduced the term mathematical induction, making its idea rigorous
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1.2. SETS. ELEMENTS

1.2.2 Difference

We define the difference of two sets X and Y as X \Y = {x | x ∈ X and x 6∈ Y }. In particular,
if Y ⊂ X then the set X \ Y is called the complement of Y in X.

Exercice 1.2.3. Let X be a set and let Y and Y ′ be two subsets of X.

1. X \ (Y ∪ Y ′) = (X \ Y ) ∩ (X \ Y ′) and X \ (Y ∩ Y ′) = (X \ Y ) ∪ (X \ Y ′).

2. X \ (X \ Y ) = Y .

1.2.3 Symmetric Difference

Let X and Y be two sets. Then we define their symmetric difference denoted as X∆Y and
defined as follows: X∆Y = (X \ Y ) ∪ (Y \X).

Exercice 1.2.4. Compare X∆Y and (X ∪ Y ) \ (X ∩ Y ).

1.2.4 Equivalence Relation. Partition

A partition of a set X is a family of subsets (Ai)i∈I of X such that X =
⋃
i∈I

Ai and for all

i, j ∈ I, i 6= j, Ai ∩Aj = ∅.
An equivalence relation R in the set X satisfies the three properties:

1. ∀x ∈ X then xRx. (Reflexivity)

2. ∀x, y ∈ X then (xRy) =⇒ (yRx). (Symmetry)

3. ∀x, y, z ∈ X then (xRy and yRz) =⇒ (xRz). (Transitivity)

The equivalence class of x ∈ X is the set denoted x and defined as follows: x = {y ∈ X | yRx}.
The set of all equivalence classes is called the quotient set and denoted X/R.
Notice that an equivalence relation on the set X defines a partition of X consisting of the
equivalence classes.
Given a partition X =

⋃
i∈I

Ai of the set X, defines an equivalence relation R on X where xRy

iff there exists i such that x and y ∈ Ai.

1.2.5 Order Relation. Poset. Upper Bound. Supremum. Lower
Bound. Infimum.

An order relation ≤ on the set X satisfies the three properties:

1. ∀x ∈ X,x ≤ x. (Reflexitivity)

2. ∀x, y ∈ X, (x ≤ y and y ≤ x) =⇒ (x = y). (Skew symmetry)

3. ∀x, y, z ∈ X, (x ≤ y and y ≤ z) =⇒ (x ≤ z). (Transitivity)

5



CHAPTER 1. “NAIVE” SET THEORY

A poset is a set X equipped with an order relation ≤.
An upper bound of a subset S of some poset (X,≤) is an element of X which is greater than
or equal to every element of S.
The term lower bound is defined dually as an element of X which is lesser than or equal to
every element of S.
A set with an upper bound is said to be bounded from above by that bound, a set with a
lower bound is said to be bounded from below by that bound.
The supremum (sup) of S, if it exists, is the least element of X that is greater than or equal
to each element of S. Consequently, the supremum is also referred to as the least upper bound
(lub). If the supremum exists, it may or may not belong to S. If the supremum exists, it is
unique.
Infimum (inf) (also referred to as the greatest lower bound) (glb), is in a precise sense dual to
the concept of a supremum.

Example 1.2.5. • Let R be the real set of numbers with the usual order ≤. Then it is a linear
ordered set, i.e. any two real numbers are comparable.

• Let N be the set of positive integers. Define the order relation � by m � n if m divides n.
Then (N,�) is a poset.

In the following, all the sets are subsets of R with the usual order.

• Let {1, 2, 3} ⊂ R, then sup{1, 2, 3} = 3;

• sup{x ∈ R | 0 < x < 1} = sup{x ∈ R | 0 ≤ x ≤ 1} = 1;

• sup
{

(−1)n − 1

n
| n ∈ N∗

}
= 1;

• Let A,B ⊂ X, and (X,≤) be a poset, then sup{a+ b | a ∈ A, b ∈ B} = sup(A) + sup(B).

• sup
{
x ∈ Q | x2 < 2

}
does not exist in Q.

• But sup
{
x ∈ R | x2 < 2

}
=
√

2.

• sup
{
x ∈ Q | x3 < 2

}
does not exist in Q.

• But inf
{
x ∈ R | x3 > 2

}
= 3
√

2;

• inf
{

(−1)n +
1

n
| n ∈ N∗

}
= −1.

1.3 Maps

1.3.1 Definition
Definition 1.3.1. A map f from a set X to a set Y , denoted f : X −! Y assignes to each
element x ∈ X a unique element f(x) ∈ Y .
Let f : X −! Y and g : Y −! Z, then we define the map g ◦ f : X −! Z by g ◦ f(x) = g

(
f(x)

)
.

The set of all maps from X to Y is denoted Y X . In particular, the set of all subsets of X is 2X .
We will understand this notation in the section Cardinality.
The notion of duality has full meaning with both the sets and the maps between the sets.
As it will be noticed in the section “Categories”, and as it will be clear in this section, the notions
of sets and maps have to be worked together.
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1.3. MAPS

1.3.2 Surjection. Injection. Bijection
Definition 1.3.2. • The map f : X −! Y is called surjection if f(X) = Y , i.e. for any

y ∈ Y , there exist x ∈ X such that f(x) = y.

• The map f : X −! Y is called injection if for any x1, x2 ∈ X,x1 6= x2 =⇒ f(x1) 6= f(x2).

• The map f : X −! Y is called bijection if f is both an injection and a surjection.

The map f is an injection iff f(x1) = f(x2) =⇒ x1 = x2.
Notice that there is a “duality” between these two first properties as well in the third one which
does not appear in the definitions of injection and surjection. This duality can be expressed as
follows: Let f : X −! Y be a map such that

• 1. for any set Z and any two maps g1, g2 : Y −! Z satisfying g1 ◦ f = g2 ◦ f , then g1 = g2.

• 2. for any set Z and any two maps g1, g2 : Z −! X satisfying f ◦ g1 = f ◦ g2, then g1 = g2.

X
f // Y

g1 //
g2

// Z || Z
g1 //
g2

// X
f // Y

The properties 1. and 2. are clearly dual. Moreover, 1. characterizes the map f as surjection
and 2. as injection.
Suppose f surjection, then f(X) = Y . Let y ∈ Y , then there exists x ∈ X such that f(x) = y.
So g1(y) = g1 ◦ f(x) = g2 ◦ f(x) = g2(y).
Suppose (g1 ◦ f = g2 ◦ f) =⇒ (g1 = g2), If f is not a surjection, there exists y ∈ Y such that
y /∈ f(X). There exist g1 and g2 such that g1(y) 6= g2(y) and g1(f(x)) = g2(f(x)) for any x ∈ X.
Then g1 6= g2 which is a contradiction and f is a surjection.
Suppose f injection. Let z ∈ Z, Then f(g1(z)) = f(g2(z)), so g1(z) = g2(z), and g1 = g2.
Suppose (f ◦ g1 = f ◦ g2) =⇒ (g1 = g2).
Then f(g1(z)) = f(x1) = f(g2(z)) = f(x2) =⇒ (g1(z) = g2(z)) and f is an injection.

1.3.3 Inverse Map
Let f : X −! Y be a map, f may be not invertible. Let define the set of subsets of X, (resp.
Y ), as P(X) = {A | A ⊂ X}, (resp. P(Y ) = {B | B ⊂ Y }). The map f induces two maps,

• the first one also denoted f : P(X) −! P(Y ) such that f(A) = {f(x) | x ∈ A,A ∈ P(X)}

• and the inverse map as the map f−1 : P(Y ) −! P(X) as follows. Let B ⊂ Y , i.e.
B ∈ P(Y ), then f−1(B) = {x ∈ X | f(x) ∈ B} ∈ P(X).

Notice that the map denoted f−1 is not the inverse of the map f , i.e. f−1 is not a map from Y
to X, and we don’t have f ◦ f−1 = IdP(X) and f−1 ◦ f = IdP(Y ).
If f is a bijection, then f−1({y}) = {x} for any y ∈ Y , so f−1 can be viewed as a map Y −! X
and f ◦ f−1 = IdY , f

−1 ◦ f = IdX .

Properties of these two maps

f

(⋃
i∈I

Ai

)
=
⋃
i∈I

f(Ai), ∀Ai ⊂ X

f(∅) = ∅

7



CHAPTER 1. “NAIVE” SET THEORY

In general, f(A1

⋂
A2) 6= f(A1)

⋂
f(A2).

We also have f(X) 6= Y and f(X \A) 6= f(X) \ f(A).

f−1

(⋃
i∈I

Bi

)
=
⋃
i∈I

f−1(Bi), ∀Bi ⊂ Y

f−1

(⋂
i∈I

Bi

)
=
⋂
i∈I

f−1(Bi), ∀Bi ⊂ Y

f−1(∅) = ∅
f−1 (Y \B) 6= f−1(Y ) \ f−1(B)

Notice that there is not a perfect duality between f and f−1.

1.3.4 Universal Mapping Property
1. Let A be a subset of X. Then there exists a canonical injection called the inclusion
ι : A ↪−! X such that ι(x) = x for any x ∈ A.
Moreover, for any set Y and any map f : Y −! X such that f(Y ) ⊂ A, there exists a
unique map g : Y −! A such that f = ι◦g. It is called Universal Mapping Property3.

Y
f

##
g

��
A �
�

ι
// X

2. Let R be an equivalence relation on the set X. Then there exists a canonical surjection
p : X −! X/R such that p(x) = x = {x′ ∈ X | x′Rx} for any x ∈ X.
Moreover, we have the following Universal Mapping Property. For any set Y and
any map f : X −! Y such that xRx′ =⇒ f(x) = f(x′), there exists a unique map
g : X/R −! Y such that f = g ◦ p.

Y

X
p
//

f

::

X/R

g

OO

Notice the duality between these two constructions. The diagrams correspond by changing the
direction of the arrows, by interchanging canonical injection and surjection. We can say that the
subset (A, ι) satisfies a left universal mapping property and the quotient set (X/R, p) a right
universal mapping property.

Let f : X −! Y be a map. In general, f is neither injective nor surjective.

1. The map f can be “made” surjective as follows:

X
f̂ //

f

55f(X) �
� ι // Y

3The map ι sends the element a onto ι(a) = a. It is the same element, but a is element of the set A and ι(a)
is element of the set X.
We have g(z) = f(z) for any z ∈ Z, so g and f are equal, but g is going to A and f to X.
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1.3. MAPS

where f̂ is the surjective map x 7−! f(x) and ι is the canonical injection.

2. “Making” the map f injective seems more difficult. However, using duality, we have

X
p //

f

55X/R
f // Y

where R is the equivalence relation on X: xRx′ if f(x) = f(x′), f is the injective map
[x] 7−! f(x), and p is the canonical surjection.
1. the map f is the composition of a surjection and a (canonical) injection, and 2. of an
injection and a (canonical) surjection.

Exercice 1.3.3. 1. Show that there exists a bijection between the sets X × Y and Y ×X. Is
this bijection unique?

2. Let E be the set of all even numbers in N. Show there exists a bijection between E and N.

3. Show there exists a bijection between N and Z.

1.3.5 Product of Sets

Definition 1.3.4. Let X and Y be two sets. We define their product as

X × Y = {(x, y) | x ∈ X, y ∈ Y }

More generally, let n sets X1, . . . , Xn we define the product

X1 × · · · ×Xn =
∏

1≤i≤n

Xi = {(x1, . . . , xn) | xi ∈ Xi, i = 1, . . . , n}

Whenever Xi = X for any i = 1, . . . , n, the product
∏

1≤i≤n

Xi is denoted Xn.

How can we define the product of any infinite family of sets? For example, (Xi) where i ∈ R. We
cannot write an element of the product as a sequence, what would be the consecutive element of
x0, or xπ? Such a product will be defined in 1.3.9.
The product of sets satisfies a “universal property” as follows:
Let X and Y be two sets and let X × Y be their product. Then there exist two canonical maps
called projections pX : X × Y −! X and pY : X × Y −! Y such that pX

(
(x, y)

)
= x and

pY
(
(x, y)

)
= y.

Moreover, we have the following (left) Universal Mapping Property. For any set Z and any
maps fX : Z −! X and fY : Z −! Y , there exists a unique map h : Z −! X × Y such that
pX ◦ h = fX and pY ◦ h = fY . For any z ∈ Z, h(z) = (fX(z), fY (z)).

Z
fX

xx
h

��

fY

&&
X X × Y

pX
oo

pY
// Y

9



CHAPTER 1. “NAIVE” SET THEORY

More generally, we have the following (left) Universal Mapping Property,

Let (Xi)i∈I be a family of sets and pj :
∏
iXi −! Xj , j ∈ I. For any set

Z and any map fj : Z −! Xj , there exists a unique map h : Z −!
∏
iXi

such that fj = pj ◦ h.

Z
fj

yy
h

��
Xj

∏
iXipj

oo

1.3.6 Sum of Sets
Definition 1.3.5. Let X and Y be two sets. Then we define their sum, also called coproduct
as follows:

X
∐

Y = ({0} ×X) ∪ ({1} × Y )

We can identify X (resp. Y ) with the subset ({0}×X) (resp. ({1}×Y ). The sum X
∐
Y is the

disjoint union of X and Y , it is the union of two copies of X and Y which are disjoint. Notice
that it is defined up to some bijections. If X ∩ Y = ∅, we can identify X

∐
Y with X ∪ Y .

If X = Y , then X
∐
Y consists of two copies of X.

Exercice 1.3.6. Define the disjoint union of a family (Xi)i∈I of sets.

The sum of sets satisfies the (right) Universal Mapping Property:
Let X and Y be two sets and let X

∐
Y be their disjoint sum. Then there exist two canonical

maps iX : X −! X
∐
Y and iY : Y −! X

∐
Y such that iX(x) = (0, x) and iY (y) = (1, y).

Moreover, for any set Z and any maps fX : X −! Z and fY : Y −! Z there exists a unique
map h : X

∐
Y −! Z such that h ◦ iX = fX and h ◦ iY = fY . We have h(0, x) = fX(x),

h(1, y) = fY (y).
Z

X
iX
//

fX

88

X
∐
Y

h

OO

Y
iY
oo

fY

ee

More generally, the following (right) Universal Mapping Property is satisfied,

Let
∐
iXi =

⋃
i{i} × Xi. Let (Xi)i∈I be a family of sets and

ιj : Xj −!
∐
iXi, j ∈ I, xj 7−! (j, xj). For any set Z and any

map fj : Xj −! Z, there exists a unique map h :
∐
iXi −! Z such

that fj = h ◦ ιj .

Z

Xj ιj
//

fj

99

∐
iXi

h

OO

Notice the duality “sum”  ! “product”.
These two examples give the complete definition of the product and the sum of two sets.
These constructions of sum and product of two sets can be defined for any family of sets.

1.3.7 Fibered Product. Fibered Sum
These notions are some important generalizations of product and sum of sets.

Fibered Product
4 Let B and C be two sets, pB : B × C −! B, pC : B × C −! C the two canonical surjections
pB(b, c) = b, pC(b, c) = c.

4also called Cartesian square or pullback
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1.3. MAPS

Let D be an arbitrary set and fB : D −! B, fC : D −! C two arbitrary maps. Then there is
a unique map hx : D −! B × C such that fB = pB ◦ hx and fC = pC ◦ hx (Universal mapping
property of the product set).

D

fB

//

fC

!!
hx .. B × C

pB

��

pC
// C

B

Consider a set A and two maps gB : B −! A, gC : C −! A such that gB ◦ pB = gC ◦ pC . Define

B
∏
A

C = {(b, c) ∈ B × C | gB(pB(b, c)) = gC(pC(b, c))} = {(b, c) ∈ B × C | gB(b) = gC(c)}

For any set D and any maps f ′B : D −! B, f ′C : D −! C such that gB ◦ f ′B = gC ◦ f ′C , there
exists a unique map h : D −! B

∏
A

C such that the following diagram is commutative (universal

mapping property)

D h
--

f ′B

..

f ′C

��
h′x ..

B
∏
A

C
� s

ι

%%
B × C

pB

��

pC
// C

gC

��
B

gB // A

D

fB

$$

fC

""h ''
B
∏
A

C

ι◦pB

��

ι◦pC
// C

gC

��
B

gB // A

The map h′x = ι ◦ h : D −! B
∏

C satisfies f ′B = pB ◦ h′x and f ′C = pC ◦ h′x where ι is the
inclusion.

Definition 1.3.7. The fibered product of (gB , gC) is the triple

(
B
∏
A

C, gB , gC

)
, where

B
∏
A

C = {(b, c) ∈ B × C | gB(b) = gC(c)}.

Example 1.3.8. 1. Let gB : B −! A be a map and C ⊂ A. Denote gC the inclusion of C
into A. Then there is a bijection from B

∏
A

C onto g−1
B (C) ⊂ B.

2. If A = {a}, then B
∏
A

C = B × C.
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CHAPTER 1. “NAIVE” SET THEORY

Fibered Sum

5 Let B and C be two sets, ιB : B −! B
∐
C, ιC : C −! B

∐
C the two canonical injections,

ιB(b) = (0, b), ιC(c) = (1, c).
Let D ba an arbitrary set and fB : B −! D, fC : C −! D. Then there exists a unique map
hs : B

∐
C −! D such that fB = hs ◦ ιB , fC = hs ◦ ιC (Universal mapping property of the

coproduct set).

B

ιB
��

fB

��

C
ιC //

fC ,,

B
∐

C

hs

$$
D

Consider a set A and two maps gB : A −! B, gC : A −! C such that ιB ◦ gB = ιC ◦ gC .
Let ∼ be the equivalence relation generated by the relations gB(a) ∼ gC(a) for all a ∈ A. Let
p : B

∐
C −! B

∐
C/ ∼ be the canonical surjection.

Then there exists a unique map h : B
∐
C/ ∼−! D making the following diagram commutative

(universal mapping property)

A
gB //

gC

��

B

ιB

��

f ′B

��

C
ιC //

f ′C
11

B
∐

C

h′s

**

p // B
∐
A

C

h

##
D

A
gB //

gC

��

B

p◦ιB
��

fB

��

C
p◦ιC //

fC
,,

B
∐
A

C

h

##
D

The map h′s = h ◦ p : B
∐
C −! D satisfies f ′B = h′s ◦ ιB and f ′C = h′s ◦ ιC .

Definition 1.3.9. The fibered sum of (gB , gC) is the triple denoted

(
B
∐
A

C, gB , gC

)
where

B
∐
A

C =
{

[u] | u ∈ B
∐

C, u = ιB(gB(a)) = ιC(gC(a)), a ∈ A
}
.

Example 1.3.10. 1. Let A ⊂ B, let ι be the inclusion from A into B and let c be the unique
map from A onto a singleton {∗}. Then there is a bijection from X

∐
A

{∗} and the quotient

set B/A.

2. If A = ∅, and B,C two sets with the trivial maps ∅ −! B, ∅ −! C, then B
∐
∅

C = B
∐

C.

5also called cocartesian square or pushout or fibered coproduct
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1.3. MAPS

1.3.8 Cardinality
Let us say that the two sets X and Y have the same cardinality if there exists a bijection
f : X −! Y . It is said that X and Y are equipotent and we denote card(X) =card(Y ).
card(X) is the “collection” of all sets equipotent to the set X. Notice that card(X) is also
denoted ℵ(X).
If X ⊂ Y , then card(X) ≤card(Y ). In particular, we denote card(∅) = 0 and card({1, 2, . . . , n} =
n.
A set is countable infinite if it has the cardinality of the set N, i.e. card(N) = ℵ0.
If a set X is finite or countable infinite, we say that it is countable and ℵ(X) ≤ ℵ0.
A set is said to be uncountable if it is not countable. N ⊂ R and R is not equipotent to N, so
card(N) <card(R).

Exercice 1.3.11. Let X and Y be two finite sets. Determine the cardinality of Y X .

Remark 1.3.12. Cardinality satisfies the three following properties: reflexivity, symmetry and
transitivity. But the collection of all sets is not a set. However we can define an equivalence
relation in the class of all sets and, as such, equipotence is an equivalence relation and ℵ(X) is
the equivalence class of X. We have card(X) = ℵ(X).

Properties

• Every subset X of a countable set is countable.

• The union of countable many countable sets is countable.

• ℵ(X ∪ Y ) ≤ ℵ(X) + ℵ(Y ) with equality if X ∩ Y = ∅.

• ℵ(X
∐
Y ) = ℵ(X) + ℵ(Y )

• ℵ(X × Y ) = ℵ(X).ℵ(Y ).

• If ℵ(X) ≥ ℵ0 then ℵ(X).ℵ(X) = ℵ(X). This result is not valid for finite sets.

• The closed unit interval I = [0, 1] ⊂ R is uncountable and R is uncountable, i.e. ℵ(R) > ℵ0.

• ℵ(X) < ℵ(P(X)). So there is no largest cardinal.

Cardinal Arithmetic

• Addition: Let X and Y be two disjoint sets, then ℵ(X) + ℵ(Y ) = ℵ(X ∪ Y ).

– (ℵ(X) + ℵ(Y )) + ℵ(Z) = ℵ(X) + (ℵ(Y ) + ℵ(Z)).
– ℵ(X) + ℵ(Y ) = ℵ(Y ) + ℵ(X).
– ℵ(X) + ℵ(∅) = ℵ(∅) + ℵ(X) = ℵ(X),ℵ(∅) = 0.
– If ℵ(X) ≤ ℵ(Y ), then ℵ(X) + ℵ(Z) ≤ ℵ(Y ) + ℵ(Z).
– ℵ0 + ℵ0 = ℵ0.
– ℵ(R) + ℵ0 = ℵ(R).
– ℵ(R) + ℵ(R) = ℵ(R).

• Multiplication: ℵ(X × Y ) = ℵ(X).ℵ(Y ).

– (ℵ(X).ℵ(Y )).ℵ(Z) = ℵ(X).(ℵ(Y ).ℵ(Z)).

13



CHAPTER 1. “NAIVE” SET THEORY

– ℵ(X).ℵ(Y ) = ℵ(Y ).ℵ(X).
– ℵ(X).ℵ({∗}) = ℵ({∗}).ℵ(X) = ℵ(X).
– ℵ(X).ℵ(∅) = ℵ(∅).ℵ(X) = ℵ(∅).
– ℵ(X).(ℵ(Y ) + ℵ(Z)) = ℵ(X).ℵ(Y )) + ℵ(X).ℵ(Z)).
– If ℵ(X) ≤ ℵ(Y ), then ℵ(X).ℵ(Z) ≤ ℵ(Y ).ℵ(Z).
– ℵ0.ℵ0 = ℵ0.
– ℵ(R).ℵ0 = ℵ(R).
– ℵ(R).ℵ(R) = ℵ(R).

• The set of all maps from Y to X is denoted XY and ℵ(XY ) = ℵ(X)ℵ(Y ).

– ℵ(X)ℵ(Y )+ℵ(Z) = ℵ(X)ℵ(Y ).ℵ(X)ℵ(Z).
– (ℵ(X).ℵ(Y ))ℵ(Z) = ℵ(X)ℵ(Z).ℵ(Y )ℵ(Z).
– ℵ(X) ≤ ℵ(Y ) =⇒ ℵ(X)ℵ(Z) ≤ ℵ(Y )ℵ(Z).
– ℵ(X) ≤ ℵ(Y ) =⇒ ℵ(Z)ℵ(X) ≤ ℵ(Z)ℵ(Y ).
– ℵℵ00 = ℵ(R) and 2ℵ0 = ℵ(R).

1.3.9 Cantor Set
Let x ∈ [0, 1], there exists a sequence s1, s2, . . . where si ∈ {0, 1, 2} for each i and such that
x =

∑
i≥1

si
3i
.

We denote x = s1s2s3 . . . and called it triadic expansion of x.
Notice that some x has two such expansions. For example 2000 . . . and 1222 . . . represent the

same number
2

3
since

2

3
=

2

3
+

0

32
+

0

33
+ · · · = 1

3
+

2

32
+

2

33
+ · · · .

This situation occurs when one of the expansions repeats 0’s and the other repeats 2’s from some
point on. No number can be written in more than one way without using the digit 1.

Definition 1.3.13. The Cantor set C is the set of all those x ∈ [0, 1] that have a triadic
expansion in which the digit 1 does not occur, i.e. x = s1s2s3 . . . where si 6= 1.

Geometrical Interpretation: Let F1 = [0, 1], F2 = [0, 1]\] 1
3 ,

2
3 [= [0, 1

3 ] ∪ [ 2
3 , 1].

Note that the “middle part” ] 1
3 ,

2
3 [ consists precisely of those x’s whose triadic expansion must

have 1 in the first digit. So, F2 = {s1s2s3 . . . | s1 6= 1}.
Now delete from F2 the middle part of each of the two intervals, i.e. F3 = [0, 1

9 ]∪ [ 2
9 ,

1
3 ]∪ [ 2

3 ,
7
9 ]∪

[ 8
9 , 1].
Note that the middle part which is deleted consists precisely of the elements s1s2s3 . . . such that
s1 6= 1 and s2 = 1. Thus, F3 = {s1s2s3 . . . | s1 6= 1, s2 6= 1}.
Then, continue the similar process inductively, at each stage deleting the open middle third of
each closed interval remaining from the previous stage.
We obtain a descending sequence

F1 ⊇ F2 ⊇ F3 ⊇ · · ·

of subsets of [0, 1], each of which is a finite union of disjoint closed intervals.
The Cantor set if

⋂
n≥1

Fn.

Proposition 1.3.14. The Cantor set C cannot contain an interval, and it is uncountable.
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Proof : The sum of the lengths of all open intervals removed from [0, 1] to form C is 1 since
1

3
+

2

9
+

4

27
+ · · · = 1

3

∑
n≥0

(
2

3

)n
= 1. It follows that C cannot contains an interval.

For each x ∈ [0, 1], let b1b2b3 . . . be a binary expansion for x, i.e. bi = , 1 for each i. Thus

x =
∑
i≥1

bi
2i
. For each i, let si = 2bi, and let f(x) be the point in [0, 1] whose triadic expansion

is s1s2s3 . . .. Then f is one-to-one, f(x) ∈ C for each x 6= 1, so f is surjective. Then C is
uncountable. �

1.3.10 Infinite Products
Let {Xi}i∈I be an infinite family of sets. If I is countable, we can write

∏
i∈I

Xi = {(xi) | xi ∈ Xi}

as a “natural” extension of the finite product. But what is the meaning of (xi) if I is uncountable?
What about if I is not an ordered set?
To solve this problem, we introduce the bijection

{(x1, x2) ∈ X1 ×X2} −! {f : {1, 2}! X1 ∪X2 | f(1) ∈ X1, f(2) ∈ X2}

For example, let X1 = X2 = X, and f(1) = f(2) = x, then f is denoted (x, x).
The right hand side gives a presentation of the product which does not depend on the order, and
it can be extended as follows:∏

i∈I
Xi :=

{
f : I !

⋃
i∈I

Xi | f(i) ∈ Xi

}

The map pi :
∏
i∈I

Xi −! Xi such that pi(f) = f(i) is called the ith-projection map and f(i) is

the ith-coordinate of f .
If I is finite, there is a bijection

{(x1, . . . , xn) ∈ X1 × · · · ×Xn} −! {f : {1, . . . n}! X1 ∪ · · · ∪Xn | f(1) ∈ X1, . . . , f(n) ∈ Xn}

If I is countable, there is a bijection{
(xi)i∈N ∈

∏
i∈N

Xi

}
−!

{
f : N!

⋃
i∈N

Xi | f(i) ∈ Xi, i ∈ N

}

An element of
∏
i∈I

Xi is a map that “chooses” a coordinate from each set in the family. It is a

“choice map” which assigns to any set A of a nonempty family of nonempty sets, an element of
A. The Axiom of choice is the following:
For any set A of a nonempty family of nonempty sets, there exists a choice map defined on A.
Then the Axiom of Choice is equivalent to the statement that each product of nonempty sets is
nonempty.

1.3.11 Exercises
1. What is the cardinality of the set {∅}?

15
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2. Is it true that ∅ ∈ {∅, {∅}}?

3. A set of cardinality 1 is called a singleton. What is card{{∅}}?

4. Prove that Z and Q are countable.

5. Prove that R\Q is uncountable.

6. Is it possible to have A 6∈ A?

7. Prove that A \ (A \B) = A ∩B for any sets A and B?

8. Prove that A ⊂ B iff A \B = ∅.

9. Define the disjoint union of the sets X1, X2, . . . , Xn.

10. Prove that X∆Y = (X ∪ Y ) \ (X ∩ Y ).

11. Let A,A′ ⊂ X and B,B′ ⊂ Y . Prove the following:

(a) (A ∪A′)× (B ∪B′) = (A×B) ∪ (A×B′) ∪ (A′ ×B) ∪ (A′ ×B′)
(b) (A×B) ∩ (A′ ×B′) = (A ∩A′)× (B ∩B′)
(c) (A×B) \ (A′ ×B′) = ((A \A′)×B) ∪ (A× (B \B′))

12. Let f : X −! Y be a map. Then

(a) f injective =⇒ f−1
(
f(A)

)
= A, ∀ A ⊂ X. Show that the equality is not true if f is

not injective.

(b) f surjective =⇒ f
(
f−1(B)

)
= B, ∀ B ⊂ Y . Show that the equality is not true if f is

not surjective.

1.4 Complements: Categories. Functors
Category theory is an area of study in mathematics that deals in an abstract way with mathemat-
ical structures and relationships between them: it abstracts from sets and functions respectively
to objects linked in diagrams by morphisms or arrows.
A category C consists of the following three mathematical entities:

• A class ob(C), whose elements are called objects;

• A class hom(C), whose elements are calledmorphisms or maps or arrows. Each morphism
f has a unique source object a and target object b. We write f : a −! b, and we say f is
a morphism from a to b. We write hom(a, b) (or Hom(a, b), or Mor(a, b) ) to denote the
hom-class of all morphisms from a to b.

• A binary operation ◦, called composition of morphisms, such that for any three objects
a, b, and c, we have hom(a, b) × hom(b, c) −! hom(a, c). The composition of f : a −! b
and g : b −! c is written as g ◦ for gf , governed by two axioms:

– Associativity: If f : a −! b, g : b −! c and h : c −! d then h ◦ (g ◦ f) = (h ◦ g) ◦ f ,
– Identity: For every object x, there exists a morphism 1x : x −! x called the identity

morphism for x, such that for every morphism f : a −! b, we have 1b ◦f = f = f ◦1a.

16



1.5. MORE EXAMPLES OF DUALITY: RETRACTIONS. SECTIONS

Example 1.4.1. • The category of sets, denoted as Sets whose objects are the sets and the
morphisms are the maps.

• The category of groups, denoted as Grps whose objects are the groups and the morphisms
are the homomorphisms between groups.

• The category of topological spaces, denoted as T op whose objects are the topological spaces
and the morphisms are the continuous maps as we will defined in the following.

• A poset is a category where the objects are the elements of the poset, the morphisms are
arrows pointing from x to y when x ≤ y.

• Any group can be seen as a category with a single object in which every morphism is
invertible (for every morphism f there is a morphism g that is both left and right inverse
to f under composition) by viewing the group as acting on itself by left multiplication. A
morphism which is invertible in this sense is called an isomorphism.

Any category C can itself be considered as a new category in a different way: the objects are
the same as those in the original category but the morphisms are those of the original category
reversed. This is called the dual or opposite category and is denoted Cop.
We defined the sum of two (a family of) sets. The categories give a general setting for the sum,
as follows.
Let (ai)i∈I be a family of objects in a category C, the sum of this family is given by an object
a of C and for every i ∈ I a morphism fi : ai −! a such that
For any object b and any morphisms gi : ai −! b of C, there is a unique morphism f : a −! b
if C such that gi = f ◦ fi for any i ∈ I (cf. left side figure and the dual in the right side figure,
i.e. in the category Cop).

b

ai gi
//

fi

::

a

f

OO b
fi

$$
f

��
a

gi
// ai

If the category C is the category of sets, we get the sum of sets as we defined above.
As exercise, define the product, fibered sum, fibered product in a category.

A functor F from the category C1 to the category C2 associated to

• any object a of C1, the object F (a) of C2.

• any morphism f : a −! b of C1, the morphism

– F (f) : F (a) −! F (b) such that F (g ◦ f) = F (g) ◦ F (f). The functor F is said to be
covariant.

– F (f) : F (b) −! F (a) such that F (g ◦ f) = F (f) ◦ F (g). The functor F is said to be
contravariant.

1.5 More Examples of Duality: Retractions. Sections
We have seen the duality between injection and surjection as morphisms in the category of sets.
It is a particular case of the most general notions of retraction and section.
Let C be a category.

17
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A retraction for a morphism f : A −! B is a A section for a morphism f : A −! B is a
morphism r : B −! A such that r ◦ f = IdA morphism s : B −! A such that f ◦ s = IdB
A retraction is injective A section is surjective

B

r

##
A

f

;;

IdA // A

A
f

##
B

s

;;

IdB // B

If the morphism f : A −! B has a retraction, If the morphism f : A −! B has a section,
then for any object C and any morphisms then for any object C and any morphisms
gi : C −! A, i = 1, 2 such that gi : B −! C, i = 1, 2 such that
f ◦ g1 = f ◦ g2, then g1 = g2 g1 ◦ f = g2 ◦ f , then g1 = g2

If the morphism f : A −! B has a retraction r If the morphism f : A −! B has a section s
then for any object C and any morphism then for any object C and any morphism
g : A −! C, there exists a morphism g : C −! B, there exists a morphism
h : B −! C such that h ◦ f = g h : C −! A such that f ◦ h = g

B

r

##
A

f

;;

IdA // A

A
f

##
B

s

;;

IdB // B

⇓ ⇓

B

h

##
A

f

;;

g // C

A
f

##
C

h

;;

g // B

A
f //

g
##

B

h
��

r // A

g
{{

C

A
s // B

f // A

C

h

OO

g

cc

g

;;
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General Topology
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Lawson-Klein bottle

H.B. Lawson came across an elegant realization of a Klein bottle in the 3-sphere S3 among a
family of helicoidal - staircase-like - surfaces. The figure on the right side shows a projection of
the surface into ordinary 3-dimensional space, R3, where the top part of the surface is clipped
away to enable an inside view. Along the blue central circle you can see a red and a green Möbius
band intersection.
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Chapter 2
Topological Spaces

Topology is derived from Greek:
{

Topos  ! place/location
Logos  ! discourse/reason/logic

Topology was also called Analysis Situs.

2.1 Open Sets. Topology

Let x be any point of the open interval ]a, b[= {x | a < x < b}, then we can move x both sides
without leaving the interval, i.e. there is a “small” interval inside ]a, b[ centered at x, although in
the interval [a, b] = {x | a ≤ x ≤ b}, the points a and b of the interval don’t satisfy this property.
Moving on the left from a, we get points outside the interval [a, b], and similarly on the right of
the point b.
Let us recall that a subset O of R is said to be open if, for each x0 ∈ O, there is some r > 0 such
that the open interval ]x0 − r, x0 + r[ is contained entirely in O. We can say that the set O is a
neighbourhood of each of its points. This property is valuable for all points of O. In particular,
the intervals ]a, b[, a < b of R are open.
Notice that, for example, any subset of the form [a, b] ⊂ R does not satisfy this property.
Let us infer some properties of the open intervals:

• ∅ and R are open in R.

• Any union of open sets of R is open in R.

• Any intersection of finitely many open sets of R is open in R.

Notice that the intersection of infinitely many open sets can be not open. For example, consider

the family of open sets
]
− 1

n
,

1

n

[
whose the intersection is {0} which is not open.

Now, using this example, we can give the next definition.
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Definition 2.1.1. A topological space consists of a pair (X, τ) where X is a set and
τ = {Oi ⊆ X, i ∈ I}, called open sets satisfying the following conditions:

1. ∅ and X ∈ τ

2. The union of any collection of open sets is an open set,∀Oij ∈ τ, j ∈ J ⊆ I,⋃
j∈J

Oij ∈ τ


3. The intersection of finitely many open sets is an open set,∀Oij ∈ τ, j = 1, . . . , n, ∀n ∈ N,

⋂
1≤j≤n

Oij ∈ τ


If the topology τ is clear from the context, we can omit it and we denote X for the topological
space (to distinguish from X is a set).

In a set, all the points have the same role and they cannot be distinguished. The topology says
how “nearby” are the points of the set. For example, let R with the usual distance d(x, y) = |x−y|.
Then, the points 1 and 2 are nearer than the points 1 and 3. The topology, i.e. the open sets,
makes precise the notion of nearness, it is a mathematical definition of nearness. Given a point
x0 of (X, τ), an open set containing x0 could be view as a set of points “near” x0; smaller is the
open set w.r.t. inclusion, containing the point x0, “nearer” from x0 are the points. However,
notice that all the points of the topological space (X, τ) are “near” since X ∈ τ . It means that
all the considered points are in the same space.
Let x, y, z be three distinct points of the topological space (X, τ). If there exists O ∈ τ such that
x, y ∈ O and z /∈ O, if for any O′ ∈ τ such that x, z ∈ O′, then y ∈ O′, we can say that x and y
are nearer that x and z. But it is not a measure of the nearness. Such a measure is effective in
the metric spaces.

Example 2.1.2. 1. (X, τ) where τ = P(X), the set of all subsets of X, is a topological space.
τ is called discrete topology on X. Notice that for any x ∈ X, {x} ∈ τ so {x} is open.
Any two points are not “very near”, same nearness .

2. (X, τ) where τ = {∅, X} is a topological space. τ is called trivial topology on X. Any
two points are “near”, same nearness, which can explain the word “trivial” to qualify the
topology.

3. Let X = {a, b, c} and τ = {∅, {a}, {b}, {a, b}, X} is a topology on X. (The points a and b
belong to the open set {a, b}, and they are nearer than a and c, or b and c.
Notice that the topologies on finite sets have a limited interest, and it is mainly used to
find counteresamples. W. Thurston1 said “An oddball topic that can lend good insight to a
variety of questions.”

4. (R, τ) where τ is the set of open sets as we defined at the beginning of this section, is a
topology called the standard or canonical topology on R. In the following, we will simply
write R when the topology is the standard one.

1William Paul Thurston (October 30, 1946 - August 21, 2012) was an American mathematician. He was a
pioneer in the field of low-dimensional topology. In 1982, he was awarded the Fields Medal for his contributions
to the study of 3-manifolds. From 2003 until his death he was a professor of mathematics and computer science
at Cornell University.
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5. Let X be a subset of the n-dimensional Euclidean space Rn(with the distance, d(x, y) for
x, y ∈ Rn), defined later in 2.3.2.. A subset O of X is called open (i.e. O ∈ τ), if given a
point x0 ∈ O, there exists δ > 0 such that {x ∈ X | d(x, x0) < δ} ⊂ O. Notice that ∅ is
considered as open.

2.1.1 Exercises
1. For a fixed point a ∈ X, the set of all subsets O ⊂ X consisting of ∅ and all the sets

containing a, is a topology.

2. For a fixed point a ∈ X, the set of all subsets O ⊂ X not containing a is not a topology.

3. Let X be an infinite set. The family of subsets consisting of X and all finite subsets of X
is not a topology.

4. Let X be an infinite set. The family of all subsets of X consisting of ∅ and all subsets such
the complement is countable is a topology.

2.2 Basis for Topology
The discrete topology on an infinite set consists of all the subsets. All the one-point sets are
open and any open set is a union of one-point sets. We can say that the one-point sets “generate”
the discrete topology via the union, i.e. any open set O is a union of the one-point sets given by
the elements of O.
Let R be the space where the topology is the standard one. Then a subset is open if for any
element of the subset, there exists an open interval containing this element and contained in the
subset. So, the open intervals suffice to determine the open sets.
The purpose is to look for some family of subsets from which all the open sets are obtained via
the union.

Definition 2.2.1. Given a topology τ on X, a basis Σ for τ is a collection of open sets in τ
such that every element in τ can be written as a union of elements of Σ. In this case, we say
that Σ generates τ .

If Σ is a basis for the topology τ , then any Σ′ such that Σ ⊂ Σ′ ⊆ τ is also a basis for τ .
So, the cardinality of a basis is meaningless.

Remark 2.2.2. Let Σ be a set of subsets of X. Then, it is possible that there is no topology
having Σ as a basis.

Example 2.2.3. Let X = {a, b, c} and Σ = {{a}, {a, b}, {b, c}}.
Then τ = {∅, X, {a}, {a, b}, {b, c}} which is not a topology on X.

So, we need some criteria to determine whether a subset Σ is a topology.

Proposition 2.2.4. A family Σ of open sets of X is a basis for the topology iff for every open
set O and every point x ∈ O, there is a set V ∈ Σ such that x ∈ V ⊂ O.

Proof: =⇒) Let Σ be a basis for τ and O open set. Then O = ∪iVi where Vi ∈ Σ. So, for
x ∈ O, there exists some i such that x ∈ Vi ⊂ O.
⇐=) Given O ∈ τ, x ∈ O, there exists Vx ∈ Σ such that x ∈ Vx ⊂ O. So O = ∪x∈OVx, hence Σ
is a basis for τ . �
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The basis Σ generates the topology τ if for O ∈ τ and any x ∈ O, there exists V ∈ Σ such that
x ∈ V .
This is a topology which is the intersection of all topologies on X containing Σ. (exercise).

Proposition 2.2.5. A family Σ of subsets of X is a basis for a topology on X iff X = ∪O∈ΣO
and the intersection of any two sets in Σ is the union of sets in Σ.

Proof: =⇒) Let Σ be a basis for the topology τ on X. Then X is open and the intersection of
two open sets is open, so it is a union of sets in Σ.
⇐=) We have to prove that the set of all unions of sets of Σ is a topology τ .
It is clear that X ∈ τ and ∅ ∈ τ .
It remains to prove that the intersection of two elements of τ is an element of τ . (exercise). �

Let Σ be a set of subsets of X satisfying one of the equivalent conditions of the propositions
above, then there is a unique topology τ on X for which Σ is a basis.

Definition 2.2.6. A family S of open sets is called a subbasis for a topological space (X, τ) if
the union equal X and the family of all finite intersections O1 ∩O2 ∩ . . . ∩Ok where Oi ∈ S for
i = 1, 2, . . . , k is a basis for (X, τ).
A family B(x) of open sets containing x ∈ X is called basis for a topological space (X, τ) at
the point x if for any open set U containing x, there exists some O ∈ B(x) such that x ∈ O ⊂ U .

2.2.1 Exercises
1. Show that a possible choice of basis for R with the usual (also called standard) topology,

would be the set of all open intervals, plus the empty set.

2. Show that the set of all open intervals ]a, b[⊂ R, a, b ∈ Q is a basis for the standard topology
on R.

3. Let X = R and let τ be generated by the collection of half-open intervals [a, b[, for all
a < b ∈ R. Show that this is also a topological space, called the half-open topology.

4. Find all the bases of topology of a discrete space, a trivial space.

5. Let X be a set and P a partition of X. Show that {A | A ∈ P} ∪ {∅, X} is a basis for
a topology on X. Show that O ⊂ X is open iff O = ∪iAi, for A ∈ P . Show that the
complement of any open set is also open.

6. Show that the set of all intervals [a,∞[, for all a ∈ R, along with the empty set, is a basis
for a topology on R, called the half-infinite topology.

2.3 Metric spaces

2.3.1 Definition and Examples
The metric spaces are very important and they can be considered as an introduction to topology.
But, what is a metric (or a distance)? Here are some examples of metrics.
Let a and b be two cities. What is the distance between a and b?
It could be either the distance in kilometers by the roads,
or the distance in kilometers for a bird following the geodesic,
or the time, in minutes, of the shortest journey,
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or the cost, in euros, of the cheapest journey by train,
or . . .
All these distances are different, but they all share the same following properties:

1. Distances are positive.

2. Two points are zero distance apart if and only if they are the same point.

3. The distance from a to b is the same as the distance from b to a.

4. The distance from a to b via c is at least as great as the distance from a to b.

Definition 2.3.1. A metric space is a pair (X, d) where X is a set and a map

d : X ×X −! R

such that

1. d(x, y) ≥ 0 for all x, y ∈ X

2. d(x, y) = 0 iff x = y

3. d(x, y) = d(y, x) for all x, y ∈ X

4. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (Triangle Inequality)

The map d is called a metric (or a distance function) on X.

The map d measures the nearness between two points.

Example 2.3.2. 1. Let Rn = {s = {x1, . . . , xn} | xi ∈ R,∀i = 1, . . . , n} be the n-dimensional

Euclidean space (with the distance d(x, y) = ‖x− y‖ =

√√√√ n∑
i=1

(xi − yi)2, for x, y ∈ Rn). In

the following, we will simply write Rn for the Euclidean space. Notice that for n = 1, this
distance is the usual one on R: d(x, y) = ‖x− y‖ = |x− y |.
Notice that in the Euclidean plane, the Euclidean metric is nothing else than Pythagoras
theorem.

2. Let X be an arbitrary set. Define for any x, y ∈ X

d(x, y) =

{
1 if x 6= y
0 if x = y

Then d is a metric that induces the discrete topology on X.

3. Let X = {x1, . . . , xn} be a finite set. Let A = (aij)i,j=1,...,n be a symmetric n × n-matrix
with positive values and zeroes on the main diagonal and such that for any i, j, k =
1, . . . , n, aik ≤ aij + ajk. Define, for any i, j, d(xi, xj) = aij. For example, let
X = {x1, x2, x3, x4} = {(0, 0), (1, 0), (1,−1), (−4, 3)} ⊂ R2. And let

A =


0 1

√
2 5

1 0 1
√

34√
2 1 0

√
41

5
√

34
√

41 0


d is a distance which is the restriction to X of the Euclidean distance on R2.

4. On R, there are many different metrics as, for example, d1(a, b) = |a−b|, d2(a, b) = 2|a−b|
and d3(a, b) = |a3 − b3| but d(a, b) = |a2 − b2| is not a metric.
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2.3.2 Metric Topology

Definition 2.3.3. Let (X, d) be a metric space. Given x ∈ X and r > 0, the open ball B(x; r)
of radius r and center x is defined by

B(x; r) = {y ∈ X | d(x, y) < r}

The open balls are the cornerstones of the topology who will be defined from the metric.

Definition 2.3.4. Let (X, d) be a metric space. Then O ⊂ X is said to be an open set if
∀x ∈ O,∃δ > 0 such that B(x; δ) ⊂ O.

Proposition 2.3.5. Let (X, d) be a metric space. Then the collection of open sets in X satisfies
the following properties:

1. ∅ and X ∈ τ

2. The union of any collection of open sets is an open set.

3. The intersection of finitely many open sets is an open set.

Proof: (exercise) �

Lemma 2.3.6. Let (X, d) be a metric space and let x0 ∈ X. Then, for any r > 0, the ball
B(x0; r) is an open set of X.

Proof: Let x ∈ B(x0; r). We have to show that ∃δ > 0 such that B(x; δ) ⊂ B(x0; r). Let δ > 0
where δ = r − d(x, x0) so d(x, x0) < r. Suppose x′ ∈ B(x; δ), then

d(x′, x0) ≤ d(x′, x) + d(x, x0) < δ + d(x, x0) = r

Hence x′ ∈ B(x0; r) and B(x; δ) ⊂ B(x0; r). �

The metric space (X, d) is a topological space (X, τd) where the topology τd is the collection of
all open sets defined by the metric. It is called metric topology.
The set of all balls in a metric space is a basis for the metric topology.
We recall that the metric topology is defined as follows:

O ⊂ X is open iff for any x ∈ O, there exists εx > 0 and a ball B(x; εx) ⊂ O

So a metric space is a topological space but the converse is not true.

Example 2.3.7. Let X be a non empty set which is not a one-point set, with the trivial topology.
Then it does not exist metric on X which induced the trivial topology on it.
(Hint: Suppose there is a metric d which determines the trivial topology on X. Let x, y ∈ X,
x 6= y, then d(x, y) = r > 0. Consider the open ball B(x; r), then x ∈ B(x; r) and y /∈ B(x; r),
so B(x; r) is an open set which is distinct of X and no empty. The topology is trivial, so it is a
contradiction)

We shall show other examples of topological spaces which are not metric. Moreover, we will give
a characterization of topological spaces such that the topology is coming from a metric (5.11),
i.e. it will be called metrization of topological spaces.
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2.3.3 Metric Topologically Equivalent
A natural question is: is it possible that two distances d1 and d2 on the same set define the same
topology?

Definition 2.3.8. Let d1 and d2 be two distances on the same set X. We say that d1 and d2

are topologically equivalent if distances d1 and d2 define the same topology on X.

Proposition 2.3.9. Let (X, d1) and (X, d2) be two metric spaces on the same set. Then the
following assertions are equivalent

1. The d1 and d2 are topologically equivalent.

2. A ⊂ X is open for d1 iff A is open for d2.

3. For any x ∈ X and any r > 0, there exist r′ > 0, r′′ > 0 such that Bd1(x; r′) ⊆ Bd2(x; r)
and Bd2(x; r′′) ⊆ Bd1(x; r).

Proof: (exercise) �

The next result is a sufficient (but not necessary) condition for the topological equivalence of
metrics.

Proposition 2.3.10. Two distances d1 and d2 are equivalent if for any x ∈ X, there exist
positive constants a and b such that, for every point y ∈ X

a.d1(x, y) ≤ d2(x, y) ≤ b.d1(x, y)

Proof: (exercise) �

Metrizability of a space depends only on the topology of the space, but properties that involve a
specific metric for the space, in general do not. For example, let (X, d) be a metric space. The di-
ameter of a subset A ofX is sup{d(x, y) | x, y ∈ A}. It is defined if A is bounded. Boundedness is
not a topological property. Consider R equipped with the metric d1 defined by d1(x, y) = |x−y|.
Then R is not bounded. Let d2 be the metric defined by d2(x, y) = inf{d1(x, y), 1}. Then R is
bounded for this metric d2. It is easy to verify that the two metric d1 and d2 are equivalent.
This example proves that the condition of the previous proposition is not necessary.

There exists a stronger version of equivalence of distances.

Definition 2.3.11. Let d1 and d2 be two distances on the same set X. We say that d1 and d2

are strongly-equivalent if there exist two constants A,A′ > 0 such that

d1(x, y) ≤ A.d2(x, y) and d2(x, y) ≤ A′.d1(x, y) for all x, y ∈ X

If the two metrics d1 and d2 are strongly-equivalent, then they are equivalent. An intuitive
reason why topological equivalence does not imply strong equivalence is that bounded sets under
one metric are also bounded under a strongly equivalent metric, but not necessarily under a
topologically equivalent metric.

Example 2.3.12. Let X = {x ∈ R | x > 0} and let d1(x, y) = |x−y|, d2(x, y) =

∣∣∣∣ 1x − 1

y

∣∣∣∣. Then
d1 and d2 are not strongly-equivalent. However, they define the same metric topology. (exercise).
Suppose d1(x, y) −! 0, then we have to prove that d2(x, y) −! 0 is not always true. Choose x =
1

n
and y =

1

2n
. Then

∣∣∣∣ 1n − 1

2n

∣∣∣∣ =
1

2n
! 0 when n!∞, on the other hand

∣∣∣∣ 1
1
n

− 1
1

2n

∣∣∣∣ = n!∞

when n!∞
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Recall that a sequence (xn)n≥1 in a metric space (X, d) converges to x ∈ X if ∀ε > 0,∃N > 0
such that d(xn, x) < ε,∀n > N .

Proposition 2.3.13. If the distances d1 and d2 are strongly-equivalent, then xn
d1−! x iff

xn
d2−! x.

Proof: (exercise) �

Proposition 2.3.14. If the distances d1 and d2 are strongly-equivalent, then d1(xn, yn)
d1−! 0

iff d2(xn, yn)
d2−! 0.

Proof: (exercise) �

Proposition 2.3.15. Let X = Rn and define the three following distances on X :

• d1(x, y) = ‖x− y‖1 where ‖x‖1 = |x1|+ · · ·+ |xn|

• d2(x, y) = ‖x− y‖2 where ‖x‖2 =

√√√√ n∑
i=1

x2
i

• d∞(x, y) = ‖x− y‖∞ where ‖x‖∞ = max{|x1|, . . . , |xn|}

Then the distances d1, d2 and d∞ are strongly-equivalent.

Proof: (exercise) �

Remark 2.3.16. Not all the metrics are strongly-equivalent.

Example 2.3.17. Let X = C([0, 1];R) (the space of all continuous functions from the unit
interval in R). Let define the two distances (exercise) on X:

d1(f, g) =

∫ 1

0

|f(x)− g(x)|dx

d2(f, g) = maxx{|f(x)− g(x)|}

Then d1 and d2 are not strongly-equivalent. (exercise). (Hint: Consider the maps f and g such
that g = 0 and given 0 < ε << 1, f(x) = 0, x ≥ ε and for 0 ≤ x ≤ ε, f(x) = ax+ b where f(0) = 1
and f(ε) = 0).

Proposition 2.3.18. Let (X, d1) and (X, d2) be two metric spaces on the same set where the
distances d1 and d2 are strongly-equivalent. Then they define the same topology, i.e. they are
equivalent, i.e. τ1 = τ2.

Proof: It is enough to notice that d1(x, y) ≤ A.d2(x, y) implies Bd2(x0; r) ⊂ Bd1(x0;A.r) and
d2(x, y) ≤ A′.d1(x, y) implies Bd1(x0; r) ⊂ Bd2(x0;A′.r). �

2.3.4 Exercises
1. Let x = (x1, x2), y = (y1, y2) ∈ R2 and the following maps d1, d2, d∞, dd, dR:

(a) d1(x, y) = |x1 − y1|+ |x2 − y2|.
(b) d2(x, y) =

√
(x1 − y1)2 + (x2 − y2)2.
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(c) d∞(x, y) = max{|x1 − y1|, |x2 − y2|}.

(d) dd(x, y) =

{
0 if x = y
1 if x 6= y

This is called discrete metric.

(e) dR(x, y) =

{
d2(x, y) if x, y, 0 are collinear
d2(x, 0) + d2(0, y) if not

Which of the above maps are metrics on R2.

2. Let d : R2 × R2 −! R be the map defined as follows:
For x = (x1, x2) and y = (y1, y2), d(x, y) = (x1 − y1)2 + (x2 − y2)2. Is d a metric?

3. Describe the subsets {x ∈ R2 | d(x, 0) = 1} for d = d1, d2, d∞, dd, dR.
Let x =

(
1
2 , 0
)
, y =

(
1
2 , ε
)
where ε > 0, and small enough.

Determine d2(x, y) and dR(x, y).

4. Let (X, d) be a metric space and A ⊂ X. Show that the metric d induces a metric dA on
A making (A, dA) a metric space. Describe the open balls in (A, dA).

5. Let X be an arbitrary set. Define for x, y ∈ X

d(x, y) =

{
1 if x 6= y
0 if x = y

Show that d is a metric on X and describe the topology induced on X.

6. Let X = R2 and for z = (x, y), z′ = (x′, y′) in X, define

d(z, z′) =

{
|y − y′| if x = x′

|y|+ |y′|+ |x− x′| if x 6= x′

Show that d is a metric on X and describe the path with the shortest distance between
two points.

7. Let (X, d) be a metric space.

Show that the map db defined by db(x, y) =
d(x, y)

1 + d(x, y)
is a metric on X. Deduce that for

any x, y ∈ X, db(x, y) ≤ 1.
Show that d and db are two equivalent metrics.

8. Let d be the Euclidean metric on R2 and consider the metric space (R2, dR) where

dR : R× R −−−! R≥0

(x, y) 7−−−!
{

d(x, y) if x, y, 0 collinear
d(x, 0) + d(0, y) if not

(a) Let p0 ∈ R2 and r > 0. Determine the ball B(p0, r) = {q ∈ R2 | dR(p0, q) < r} and
Cl(B(p0, r)) = {q ∈ R2 | dR(p0, q) ≤ r} , where r is going from 0 to +∞. (Hint:
Consider the cases r < d(o, p0) and r ≥ d(o, p0)).

(b) Given q ∈ B(p0, r), show that there exist a ball B(q, r′) ⊂ B(p0, r).
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9. Let Z be the set of integers and let p > 0, p prime. Given two integers m,n ∈ Z, there
exists a unique t ∈ Z such that m− n = pt.k where k ∈ Z, k not divisible by p. Let define

d : Z× Z −−−! R
(m,n) 7−−−! 0 if m = n

(m,n) 7−−−! 1

pt
if not

(a) Prove that d is a distance and Z is a metric space.
(b) Let p = 3. Describe the open ball B(0; 1).

10. Let R2 the Euclidean space and let a and b two distinct points of R2. Define the segment
[a, b] determined by the two points a and b. Let m be the middle of [a, b]. Show that m is

the only point of R2 such that d(a,m) = d(m, b) =
1

2
d(a, b).

11. Let A be a non-empty subset of the metric space (Y, d). The diameter of A is sup{d(a, b) |
a, b ∈ A}. It is denoted δ(A). It is said that A is bounded if it is no empty and its diameter
is finite.
Let X be an arbitrary topological space. Let C(X,Y ; d) be the set of bounded continuous
map of X into Y , i.e.

C(X,Y ; d) = {f ∈ Y X | f continuous and δf(X) <∞}

Define D(f, g) = sup{d
(
f(x), g(x)

)
| x ∈ X} for any f, g ∈ C(X,Y ; d). Show that D is a

distance on C(X,Y ; d).

12. Let R2 be the real plane equipped with the two distances d1, d2 defined as follows:
d1(x, y) = |x1 − y1|+ |x2 − y2| and d2(x, y) =

√
(x1 − y1)2 + (x2 − y2)2.

Let a = (1, 1), b = (−1, 1), c = (1,−1), e = (−1,−1) and o = (0, 0) be five points. Com-
pute di(a, o), di(b, o), di(c, o), di(e, o), di(a, b), di(a, c), di(b, e), di(c, e) and di(a, e), i = 1, 2.
Let a = (a1, a2), b = (b1, b2) be two distinct points of R2. The segment [a, b] is the set
{((1− t)a1 + tb1, (1− t)a2 + tb2) | 0 ≤ t ≤ 1}. The middle of [a, b] is the point where t = 1

2 .
Determine the middle of the segments [a, e], and [b, c].
Is it possible to characterize the middle of a segment in term of the distance di, i = 1, 2?

2.4 Poset of Topologies
Let (X, τ1) and (X, τ2) be two topological spaces on the same set X.

Definition 2.4.1. If τ1 ⊂ τ2, then the topology τ2 is said to be finer, i.e. (stronger, larger)
than the topology τ1. And τ1 is said to be coarser, i.e. (weaker, smaller) than the topology τ2.

The relation “finer” between the topologies on the set X is an order relation.

Example 2.4.2. 1. The discrete topology on X is the finest (i.e. strongest or largest) one.

2. The trivial topology on X is the coarsest (i.e. weakest or smallest) one.

Remark 2.4.3. Two topologies (X, τ1) and (X, τ2) on the same set X are not necessarily com-
parable. In other words, the set of all topologies on the set X is not a linear order set. It is a
poset.

Example 2.4.4. Let X = {a, b} and τ1 = {∅, {a}, X}, τ2 = {∅, {b}, X}. Then neither τ1 ⊂ τ2
nor τ2 ⊂ τ1. So these two topologies are not comparable.
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2.4.1 Exercises

1. Define all the topologies on the set {a, b} and describe their poset.

2. (a) Let τ1 consist of the empty set together with all subsets of R whose complement is
finite. Prove that τ1 is a topology on R. Prove that every set in τ1 is open in the
usual topology, but not conversely.

(b) Let τ2 consist of all sets O such that for each x ∈ O, there is an interval [a, b[ with
x ∈ [a, b[⊂ O. Prove that τ2 is a topology on R.

(c) Compare the three topologies τ1, τ2 and the standard one.

3. Let define the topology τ` on the set of real numbers R generated by the family of all
half-open intervals of the form [a, b[= {x | a ≤ x < b}, where a < b.
Let define the topology τK on the set of real numbers R generated by the family of all
open intervals ]a, b[ where a < b along with all sets of the form ]a, b[\K where K ={

1
n | n ∈ N>0

}
.

Show that the topologies τ` and τK are strictly finer than the standard topology on R, but
are not comparable with one another.

2.5 Closed Sets

2.5.1 Definition and Properties

Definition 2.5.1. Let (X, τ) be a topological space. A subset C ⊂ X is said to be closed if
X \ C is open.

The set C ⊂ X is closed iff the complement X \ C is open and the set O ⊂ X is open iff the
complement X \O is closed.
Notice that the property of being closed is not the negation of the property of being open.

Exercice 2.5.2. Find examples of a topological space (X, τ) and subsets such that

1. They are both open and closed

2. They are neither open nor closed.

Proposition 2.5.3. Let (X, τ) be a topological space. Then the collection of closed sets has the
following properties

1. ∅ and X are closed.

2. The intersection of any collection of closed sets is a closed set.

3. The union of finitely many closed sets is a closed set.

Proof: (exercise) �

Remark 2.5.4. A topology can be defined in terms of closed sets. It is the duality “open-closed”.
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OPEN CLOSED

O = X \ C C = X \O
∅ = X \X X = X \ ∅
X = X \ ∅ ∅ = X \X⋃

i∈I
Oi = X \

⋂
i∈I

Ci =
⋃
i∈I

(Oi \ Ci)
⋂
i∈I

Ci = X \
⋃
i∈I

Oi =
⋂
i∈I

(X \Oi)⋂
i≤k

Oi = X \
⋃
i≤k

Ci =
⋂
i≤k

(Oi \ Ci)
⋃
i≤k

Ci = X \
⋂
i≤k

Oi =
⋃
i≤k

(X \Oi)

Example 2.5.5. • Let R with the standard topology. Then for any a, b ∈ R, a ≤ b, the
interval [a, b] is closed. In particular, the one-point set {a} is closed for any a ∈ R.

• Let (X, τ) be a topological space where τ is the discrete topology. Then any subset A ⊆ X
is both open and closed.

Remark 2.5.6. Being open and closed are not mutually exclusive. In fact, subsets that are both
open and closed often exist, and play a special role as we will see in 5.2.

Example 2.5.7. Let a, b ∈ Z, a 6= 0. Denote Na,b = {· · · , b − 2a, b − a, b, b + a, b + 2a, · · · } =
{an+ b | n ∈ Z}. The set of all Na,b, a, b ∈ Z, a 6= 0 is a basis for a topology on Z.
- Z =

⋃
a,bNa,b = N1,0.

- For any n ∈ Z, n ∈ Na1,b1 ∩Na2,b2 =⇒ n ∈ Na,b where a = lcm(a1, a2), b = n.
Notice that Na1,b1 ∩Na2,b2 can be empty. Take a1 = a2, b1 6= b2 and b1 6= a1.
Let n ∈ Na1,b1 ∩Na2,b2 , then n = a1p+ b1 = a2q+ b2. Let α be the commun factor of a1 and a2,
i.e. a1 = α.a′1, a2 = α.a′2. Define a = a1a

′
2 = a2.a

′
1. Then

a1p+ b1 = a2q + b2 =⇒ a.k + a1p+ b1 = a.k + a2q + b2 for some k ∈ Z

and
a1(p+ a′2k) + b1 = a2(q + a′1k) + b2 = ak + n

so for any k ∈ Z, these integers belongs to Na1,b1 ∩Na2,b2 .
Moreover, we have the two following properties.
1. Every open set contains some Na,b. Then a finite set is never open and its complement is
never closed.

2. Na,b is both open and closed. It is closed: Na,b = Z \
a−1⋃
j=1

Na,b+j.

As an amazing consequence, we deduce that the set of prime numbers is infinite, (topological
proof of a question in Number theory).
The only integers which are no multiple of a prime are ±1, i.e. each integer has a decomposition
in a product of prime numbers, so

⋃
p prime

Np,0 = Z\{−1,+1} which, from 1., is not closed, so it

is not a finite union of closed sets. From 2., Np,0 is closed and
⋃

p prime

Np,0 is not a finite union,

so the set of prime numbers is infinite.

2.5.2 Basis for Closed Sets
A topology is defined either by the open sets or dually by the closed sets. We defined a basis for
the open sets in 2.2. We can define, dually, a basis for the closed sets.
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Definition 2.5.8. A basis for the closed sets for the topological space X, is a collection Ξ of
closed sets such that every closed set is an intersection of elements of Ξ.

Proposition 2.5.9. A set Ξ of closed sets is a basis for the topology of X iff for any closed set
C and any point x /∈ C, there exist an element B ∈ Ξ containing C and not containing the point
x.

Proof: Exercise (It is the dual of prop. 2.2.4) �

2.5.3 Zariski Topology
Let F be a commutative field, and let An(F) = Fn.
A Zariski2 set of An(F) is V = {x := (x1, . . . , xn) ∈ Fn | Pi(x) = 0, Pi ∈ F[X1, . . . , Xn], i ∈ I}.

Proposition 2.5.10. The set of all Zariski sets is the set of closed sets for a topology on An(F),
called Zariski topology.

Proof: Notice that V is determined by the ideal ({Pi(X1, . . . , Xn) | i ∈ I}).

• ∅ is a Zariski set; let P = 1.

• Let V,W be two Zariski sets defined by (Pi)i∈I , resp. (Qj)j∈J . We denote (x1, . . . , xn) = x.
Then V ∪W = {x ∈ Fn | PiQj(x) = 0, i ∈ I, j ∈ J}.

• Let Vj , j ∈ J , be a family of Zariski sets defined by the family of polynomials (Pij)i∈Ij for
j ∈ J . Then

⋂
j∈J

Vj = {x ∈ Fn | Pij(x) = 0, j ∈ J, i ∈ I}.

Example 2.5.11. Every ideal of C[X] is principal, so every Zariski (closed) set in A1(C) is
the set of zeros of one polynomial P (X). C is an algebraically closed field, so every polynomial
factorizes, P (X) = a(X − a1)n1 · · · (X − ak)nk , and V (P ) = {a1, . . . , ak}.
Then the closed set for the Zariski topology on A1(C) are ∅, the finite subsets, and A1(C).

Remark 2.5.12. Determine the Zariski topology on A1(R).
If F is a finite field, then the Zariski topology on A1(F) is the discrete topology.

Notice that we define similarly the Zariski topology on the projective spaces.

2.5.4 Exercises
1. Find a family of closed subsets of R whose union is not closed.

2. Let (X, d) be a metric space. Let x0 ∈ X and let r > 0. Show that {y ∈ X | d(x0, y) ≤ r}
is closed. It is called closed ball of center x0 and radius r.

3. Let P (x0, x1, . . . , xn) be a homogeneous polynomial of degree k, i.e. P (λx0, λx1, . . . , λxn) =
λkP (x0, x1, . . . , xn). Let Pn(F) = Fn+1 \ {0}/ ∼ where z ∼ z′ if z′ = λz, λ 6= 0. Denote z̄
the equivalence class of z.
Define VP = {z̄ ∈ Pn(F) | P (z) = 0}.
Define the coarsest topology on Pn(F) in which the VP are the closed sets. This is the so
called Zariski topology.
Show that this topology is not Hausdorff and every nonempty nopen set is dense in Pn(F).
Determine the closed sets in P1(R).

2Oscar Zariski (April 24, 1899 ? July 4, 1986) was a Russian-born American mathematician and one of the
most influential algebraic geometers of the 20th century.
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2.6 Neighbourhoods

Definition 2.6.1. Let (X, τ) be a topological space and x ∈ X. A subset N ⊂ X is said to be a
neighbourhood of x if x ∈ N and there exists an open set O containing x and contained in N .

Sometimes, a neighbourhood of x is defined as an open set containing x. If so, we call it an open
neighbourhood.
A closed neighbourhood of x is a closed set containing a open neighbourhood of x.
A neighbourhood of the point x is the set of all the points “near” x, according the common
meaning. It does not need to be either open or closed.

Lemma 2.6.2. Let (X, τ) be a topological space. A subset N ⊂ X is open iff N is a neighbourhood
of each of its point.

Proof:

=⇒) An open set N is a neighbourhood of each of its points, by definition of neighbourhood.

⇐=) Conversely, suppose N ⊂ X is a neighbourhood of each of its points. Let x ∈ N , then
there exists an open set Ox containing x and contained in N . Thus N is open since it is
the union of all the open sets Ox where x ∈ N . �

O ⊂ X is open iff ∀x ∈ O,∃Nx open neighbourhood of x such that Nx ⊂ O
.

In 2.8. we will give a characterization of closed sets by neighbourhoods, i.e. the “dual” of the
charaterization of open sets.

2.6.3. Properties of neighbourhoods.
Let (X, τ) be a topological space.

1. Let N1 and N2 ⊂ X be two neighbourhoods of x ∈ X, then N1 ∩N2 is a neighbourhood of
x.

2. Let N ⊂ X be a neighbourhood of x ∈ X and M ⊃ N , then M is also a neighbourhood of
x.

2.6.1 Exercises

1. Let X be a topological space. Show that the set N of all neighbourhoods satisfy the
following properties:

• Every neighbourhood of x contains x.

• Any finite intersection of neighbourhoods is a neighbourhood.

• Let N(x) be a neighbourhood of x. Then there exists a neighbourhood N ′(x) ⊂ N(x)
of x such that N(x) is a neighbourhood of each point of N ′(x).

2. Give an explicit description of all neighbourhoods of a point in

• a discrete space.

• a trivial space.
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2.7 Separability I

2.7.1 Hausdorff Spaces

Definition 2.7.1. A topological space (X, τ) is said to be Hausdorff3 if any distinct points
p 6= q of X have disjoint neighbourhoods.
(∀ p, q ∈ X, p 6= q,∃ Op, open neighbourhood of p and ∃ Oq, open neighbourhood of q such that
Op ∩Oq = ∅).

Hausdorff spaces are named for Felix Hausdorff, one of the founders of topology. Hausdorff’s
original definition of a topological space (in 1914) included the Hausdorff condition as an axiom.

Example 2.7.2. 1. R, with the standard topology, is Hausdorff.

2. A topological space, with the discrete topology, is Hausdorff.

3. A metric space is Hausdorff.

4. The affine line A1(R) is not Hausdorff for the Zariski topology. More generally, if the field
F is infinite, the affine line A1(F) is not Hausdorff.

Remark 2.7.3. A non Hausdorff space cannot be a metric space.

Exercice 2.7.4. Let (R, τ) be the topological space where τ = {A ⊆ R | R\A finite}∪{∅}∪{R}.

1. Show that O open for τ is open for the standard topology.

2. Show that τ is not a metric topology.

Proposition 2.7.5. In a Hausdorff space, any one-point set is closed.

Proof: Consider the one-point set {p}. For any q 6= p, there exist an open set Oq not containing
p. The union ∪Oq, q 6= p is open and is equal to X \ {p}, so {p} is closed. �

Proposition 2.7.6. Let X be a topological space. The followings are equivalent

1. X is Hausdorff.

2. The intersection of closed neighbourhoods of any point is the one-point set.

3. The diagonal ∆ = {(x, x) | x ∈ X} is closed in X ×X.

Proof:

• 1 =⇒ 2. Let x, y ∈ X,x 6= y, then there exist two disjoint open neighbourhoods Ox, Oy.
Then Oy ⊂ X \ {x} and X \ {x} is open, hence the one-point set {x} is closed.

• 2 =⇒ 1. Let y 6= x and Ox an open neighbourhood of x. Let COx,i , i ∈ I denote the
family of closed neighbourhood of x containing Ox. The intersection of all closed sets
containing Ox is a closed neighbourhood of x. By assumption, the intersection of these
closed neighbourhoods for all Ox is

⋂
Ox

COx = {x}, i.e. there is some COx such that y /∈ COx ,

so y ∈ X \ COx open set that is disjoint from Ox open neighbourhood of x.

3Felix Hausdorff is a German mathematician (1868-1942)
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• 1 =⇒ 3. Let (x, y) /∈ ∆, i.e. x 6= y, so there exist disjoint open neighbourhoods Ox, Oy.
Then Ox×Oy is an open neighbourhood of (x, y) ∈ X×X that does not meet the diagonal
∆. Then ∆ is closed in X ×X.

• 3 =⇒ 1. Let (x, y) /∈ ∆, i.e. x 6= y. Then there exists an open neighbourhood of the point
x, O(x,y) = Ox × Oy where Ox, (resp. Oy) is an open neighbourhood of x (resp. y), such
that O(x,y) ∩∆ = ∅, i.e. Ox ∩Oy = ∅ and X is Hausdorff.

�

2.7.2 Separability Conditions

Hausdorff spaces are the most common separated spaces in topology, but there exist some other
separability conditions, and in the following, we give some of them.
Let (X, τ) be a topological space, and two distinct points p, q ∈ X, p 6= q.

Definition 2.7.7. • T0-spaces also called Kolmogorov spaces4
There exists O ∈ τ such that O contains only one of the two points p, q.

• T1-spaces also called Frechet spaces5.
There exists O ∈ τ such that p ∈ O, q /∈ O, and there exists O′ ∈ τ such that p /∈ O′, q ∈ O′.
X is a T1-spaces iff ∀p ∈ X, {p} is closed.

• T2-spaces also called Hausdorff spaces.

• T3-spaces6
∀p,∀F ′ closed set, p /∈ F ′,∃O,O′ ∈ τ such that p ∈ O,F ′ ⊆ O′, O ∩O′ = ∅.
X is a T3-spaces iff any point has a fundamental system of closed neighbourhoods.

• T4-spaces7
X is a T1-space and given two disjoint closed sets F, F ′, there exist two disjoint open sets
O,O′ such that F ⊂ O and F ′ ⊂ O′.

Example 2.7.8. Let X = {0, 1} and τ = {∅, {0}, X}. Then X is T0 and not T1.
Let X be an infinite set. Define the topology τ on X where τ = {∅} ∪ {O | X \ O is finite}.
Then X is T1 but not Hausdorff.

Definition 2.7.9. Suppose that the one-point sets are closed, i.e. the space is T1.

• A space satisfying T3 is called regular.

• A space satisfying T4 is called normal.
4Andrey Nikolaevich Kolmogorov, (25 April 1903-20 October 1987) was a Russian mathematician who made

significant contributions to the mathematics of probability theory, topology, intuitionistic logic, turbulence, clas-
sical mechanics, algorithmic information theory and computational complexity.

5Maurice Fréchet (September 2, 1878, June 4, 1973) was a French mathematician. He made major contributions
to the topology of point sets and introduced the entire concept of metric spaces. He also made several important
contributions to the field of statistics and probability, as well as calculus.

6Leopold Vietoris (4 June 1891-9 April 2002), was an Austrian mathematician known for his contribution to
topology.

7Heinrich Franz Tietze (31 August 1880 - 17 February 1964) was an Austrian mathematician, famous for the
Tietze extension theorem on functions from topological spaces to real numbers. He also developed the Tietze
transformations for group presentations, and was the first to pose the group isomorphism problem. Tietze’s graph
is also named after him; it describes the boundary of a subdivision of the Möbius strip into six mutually-adjacent
regions, found by Tietze as part of an extension of the four color theorem to non-orientable surfaces.
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Figure 2.1

Proposition 2.7.10. A normal space is regular and Hausdorff.
A regular space is a Hausdorff space.

Proof: The proof is clear from the definitions. �

2.7.3 Exercises

1. Let A1(F), where F infinite, equipped with the Zariski topology. Then, for any p, q ∈
A1(F), p 6= q, show that there exists an open neighbourhood Np of p such that q /∈ Np.

2. A topological space, with the trivial topology, is not Hausdorff (if it is not a one-point set).

3. Let X be a Hausdorff space and let x ∈ X. Then {x} is closed.
If X is a T1-space, show that every one-point set is closed.

4. Let (R, τ) be the topological space where (O ∈ τ if either O = ∅ or R\O is a finite set).
Show that R with this topology is not Hausdorff.

5. Let (N, τ) be the topological space where (O ∈ τ if either O = ∅ or N\O is a finite set).
Show that N with this topology is not Hausdorff.

6. Let X = [0,+∞[ and τ = {∅, X, ]a,+∞[, for any a ∈ X}. Prove that τ is a topology on
X which is not Hausdorff.

7. We defined the half-infinite topology on R to be generated by the set of all intervals
[a,∞[, for all a ∈ R, along with the empty set. Is it a Hausdorff space?

8. Let G be a topological group8 which is a T1-space is Hausdorff.

2.8 Interior. Closure. Dense. Frontier. Adherent Points.
Accumulation Points

In this section, openness and closeness are dually characterized.

8A topological group is a group (G, e, ∗) and a topological space (G, τ) such that the mappings (g, h) 7−! g ∗h
and g 7−! g−1 are continuous
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2.8.1 Interior. Closure
Let (X, τ) be a topological space and let A ⊂ X.

Definition 2.8.1. 1. The interior of A is the greatest (w.r.t. inclusion) open set contained
in A, i.e. the union of all the open sets contained in A. It is denoted Int(A).

2. The closure of A is the smallest (w.r.t. inclusion) closed set containing A, i.e. the
intersection of all the closed sets containing A. It is denoted Cl(A).

We saw how nearness between two points is defined in terms of open sets. This notion that we
can also call “closeness”, can be defined in terms of closed sets, i.e. a point is “close” to a set if
it belongs to the closure of the set.

Remark 2.8.2. Notice that Int(A) is an open set as union of open sets and Cl(A) is a closed
set as intersection of closed sets.

A open iff A = Int(A)

A closed iff A = Cl(A)

The definitions of interior and closure are “dual” under open  ! closed, greatest  ! smallest,
union  ! intersection, contained  ! containing.
We recall that open and closed are not the negation from each other.

Proposition 2.8.3. x ∈ Cl(A) iff for any neighbourhood Nx of x, Nx ∩A 6= ∅.
x ∈ Int(A) iff there exists some neighbourhood Nx of x such that Nx ⊂ A.

Proof:

x ∈ Cl(A) iff x ∈ F for any closed set F ⊃ A
iff x /∈ X \ F for any closed set F ⊃ A
iff x /∈ O for any open set O ⊂ X \A
iff for any neighbourhood Nx of x, Nx ∩A 6= ∅

The second assertion follows from the definition of the interior: x ∈ Int(A) iff x ∈ O for some
open set O such that O ⊂ A. (As an exercise, verify it by using duality). �

Remark 2.8.4. They are characterizations of open sets and closed sets.

In particular, let (X, d) be a metric space, A a subset of X. Then Cl(A) = {x ∈ X | d(x,A) = 0}.
(exercise)

Example 2.8.5. Let R, with the standard topology.

1. Int([0, 1[) =]0, 1[.

2. Int(Q) = ∅ and Cl(Q) = R.(Hint: Any open interval in R contains irrational points).

3. Int(R\Q) = ∅ and Cl(R\Q) = R.(Hint: Any open interval in R contains rational points).

Exercice 2.8.6. Prove these equalities.

Lemma 2.8.7. Let (X, τ) be a topological space and let A ⊂ X and B ⊂ X.

1. A ⊂ B =⇒Int(A) ⊂Int(B) and Cl(A) ⊂ Cl(B).
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2. Int(X\A) = X \ Cl(A) and Cl(X \A) = X \ Int(A).

3. Int(A)∩Int(B) =Int(A ∩B) and Cl(A)∪Cl(B) =Cl(A ∪B)

Proof: (exercise) �

Remark 2.8.8. The second item shows that Int(A) can be defined as the negation of Cl(X \A).
x ∈ Int(A) iff ∃Nx such that Nx ⊂ A iff ∃Nx such that Nx ∩ (X \A) = ∅.
x /∈ Int(A) iff ∀Nx, Nx ∩ (X \A) 6= ∅ iff x ∈ Cl(X \A).
Notice that the duality is between Int(A) and Cl(A).

Example 2.8.9. Let R, with the standard topology.

1. Cl([0, 1[) = [0, 1].

2. Cl(Q) = R.

3. Cl(R\Q) = R.

2.8.2 Dense

Definition 2.8.10. Let X be a topological space and let A ⊂ X. A is said to be (everywhere)
dense in X if Cl(A) = X.

Example 2.8.11. Let R be the space with the standard topology. Q is dense in R because we
proved Cl(Q) = R.

At the other extreme,

Definition 2.8.12. Let X be a topological space and let A ⊂ X. A is said to be nowhere dense
in X if Cl(A) contains no open subset of X.

Example 2.8.13. The Cantor set C ⊂ [0, 1] is dense in [0, 1]. As intersection of closed subsets
of [0, 1], C is closed, so Cl(C) = C. We need only show that C has an empty interior in [0, 1].
If C has an interior point in [0, 1], it would contain an interval which is not (see 1.3.14). Thus
C is nowhere dense in [0, 1].

2.8.3 Frontier

Definition 2.8.14. The Frontier of a subset A ⊂ X is the set Cl(A)\Int(A). It is denoted
Fr(A).

Example 2.8.15. Let A be some subset of the topological space (X, τ).

1. Let [0, 1[⊂ R with the standard topology. Then Fr([0, 1[) = {0, 1}.

2. Show that Fr(A) = Fr(X \A).

3. Show that A is closed iff Fr(A) ⊂ A.
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2.8.4 Exercises
1. Let dR : R2 × R2 −! R be the map defined as follows (cf ex 2.3.1.1d):

For x = (x1, x2) and y = (y1, y2), d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.

dR(x, y) =

{
d(x, y) if x, y, 0 are collinear
d(x, 0) + d(0, y) if not

For the metric dR on the real plane, R2, determine (and draw the pictures).
Let p0 = (1, 0).

(a) the circle of radius 1
2 with center p0.

(b) the circle of radius 2 with center p0.

(c) the ball B(p, r) = {q ∈ R2 | dR(p, q) < r} where p ∈ R2 and r > 0.

(d) the ball B(p0, 2) = {q ∈ R2 | dR(p0, q) < 2}. Show that for any q ∈ B(p0, r), there
exists a ball B(q, r′) ⊂ B(p0, r).

(e) the ball B
(
p0,

1
2

)
=
{
q ∈ R2 | dR(p0, q) <

1
2

}
. Show that for any q ∈ B(p0, r), there

exists a ball B(q, r′) ⊂ B(p0, r).

(f) Cl(B(p0, 2)).

(g) Cl
(
B
(
p0,

1
2

))
.

(h) Fr(B(p0, 2)).

(i) Fr
(
B
(
p0,

1
2

))
.

2. Let A,B be two subsets of the topological space (X, τ).

(a) Is it true that Int(A)∪Int(B) =Int(A ∪B) and Cl(A)∩Cl(B) =Cl(A ∩B)?

(b) Show that A is nowhere dense in X if Int(Cl(A)) = ∅.
(c) Let (X, d) be a metric space. Then Cl

(
B(x, r)

)
= {y ∈ X | d(y, x) ≤ r}.

(d) Let A and B be dense in X. Prove that if A and B are open, then A∩B is also dense
in X.

2.8.5 Adherent Points. Accumulation Points
Definition 2.8.16. A point x ∈ X is an adherent point of the subset A ⊂ X if all the open
neighbourhoods of x intersect A.

∀Nx, open neighbourhood of x, Nx ∩A 6= ∅

Definition 2.8.17. A point x ∈ X is an accumulation point of a subset A if each neighbourhood
of x contains some points of A \ {x}.

∀Nx, open neighbourhood of x, Nx ∩ (A \ {x}) 6= ∅

In other words every neighbourhood of x contains points of A different from x.

Example 2.8.18. Consider the following subsets of R assigned with the standard topology.

1. Every point in the closed interval [0, 1] is an accumulation point of the open interval ]0, 1[
since every deleted neighbourhood of x ∈ [0, 1] intersects some point in ]0, 1[.
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2. The set ]0, 1[∪{2} has accumulation points [0, 1]. The number 2 is not an accumulation
point of the set since there exists a deleted neighbourhood around 2 that does not intersect
members of the set.

3. Z have no accumulation point even though the set is infinite.

Definition 2.8.19. A point x ∈ X is an isolated point of a subset A if x ∈ A but x is not an
accumulation point, i.e. there exists a neighbourhood of x which does not contain any point of
A \ {x}.

Remark 2.8.20. x is adherent point of A if x is either an accumulation point of A or an isolated
point of A.

Proposition 2.8.21. Let A be a subset of the topological space X. Then

Cl(A) = {x ∈ X | x is adherent of A}

Proof: Let x /∈ Cl(A), then there exists a closed set F containing A and such that x /∈ F .
Therefore, x ∈ X \ F = Nx, open neighbourhood of x and Nx ∩ A ⊂ Nx ∩ F = ∅. So x is not
adherent of A.
Conversely, let x ∈ Cl(A), then x ∈

⋂
A⊂F

F , where F is closed. But
⋂
A⊂F

F = X \
⋃

O⊂X\A

O where

O = X \ F . Then it does not exist any open neighbourhood Nx of x such that Nx ∩ A = ∅.
Therefore x is adherent of A. �

Example 2.8.22. Let R with the standard topology and let A = Z ⊂ R.
Then

Fr(Z) = Cl(Z) \ Int(Z)

= Cl(Z) ∩ Cl(R \ Z)

because Cl(R \ Z) = R \ Int(Z) (lemma 2.8.7.2)
Moreover R\Z =

⋃
n∈Z

]n, n+ 1[ is open as union of open sets thus Z is closed and Cl(Z) = Z.

Any n ∈ Z is adherent of the subset R\Z because any open neighbourhood of n contains an
interval ]n− ε, n+ ε[ for some ε > 0. So Cl(R \ Z) = R and finally Fr(Z) = Cl(Z) = Z.

The subset A ⊂ X is dense in X iff for any non empty open set O, O ∩ A 6= ∅, i.e. any point of
X \A is a adherent point of A.

Here is the “dual” characterization of closed sets.

F ⊂ X is closed iff ∀Nx open neighbourhood of x, (Nx ∩ F) 6= ∅, then x ∈ F
.

2.8.6 Exercises
1. Let (X, τ) be a topological space and let A,B ⊂ X be two subsets of X.

(a) Show that Fr(A ∪B) ⊂ Fr(A) ∪ Fr(B).

(b) Show that this inclusion can be strict (Example: X = R, A = Q ∩ [0, 1] and
B = [0, 1] \A).
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(c) Suppose Cl(A) ∩ Cl(B) = ∅, then show that Fr(A ∪B) = Fr(A) ∪ Fr(B).

2. Let (X, τ) be a topological space and let A ⊂ X be a subset of X. Prove: Fr(A) = ∅ iff A
is both open and closed.

3. Let X = {a, b, c} with the topology τ = {∅, {a}, {a, b}, {a, c}, X}. Find the adherent points
of the set {a}.

4. Let X = {a, b} and let τ = {∅, {a}, X}. Show that τ is a topology on X. Define the
adherent points of each subset of X.

5. Prove that a finite subset A of a Hausdorff space X has no accumulation points. Define
the adherent points of A. Conclude that A must be closed.

2.9 Convergence

2.9.1 Filters

The expression “a sequence (xn) of real numbers has a limit (or converges to) a real number x0”
means “every open interval containing x0 contains all but a finite number of the xn”.

∀ε > 0,∃n0 ∈ N,∀n > n0, |xn − x0| < ε i.e. xn ∈]x0 − ε, x0 + ε[

For real-valued functions we also define the expression “f(x) tends to y0 when x tends to x0”
or “ . . . when x tends to zero on the right ”, etc. Other elementary concepts of limits are also
important. For example, the concept of a doubled sequence (xp,q) which converges to x0 when p
and q tend to infinity.
If we consider the case of a sequence (xn) tending to x0 when n tends to infinity we can make
the following observations about the definition:

1. The expression “all the xn except for a finite number” means that we consider the com-
plements (w.r.t. the set of the xn) of finite subsets. If we denote these complements by
A,A′, . . . none of them is empty and the intersection A ∩ A′ of any two is again the com-
plement of a finite subset. Thus the set of complements with respect to the set of xn, of
the finite subsets is a fundamental family which does not contain the empty set.

2. The expression “every open interval I containing x0 contains all the xn except for a finite
number ” means that every neighbourhood I of x0 is contained in some A.

For example, let (xn) be the sequence where xn = (−1)n +
(−1)n

n
. This sequence does not

converge. However, the subsequences (x2n) and (x2n+1) converge towards the points −1 and +1.
The complements of finite subsets of {xn | n ∈ N} satisfy the first property, but not the second.
These examples give rise to the definitions of filters.

Definition 2.9.1. Let A be a set. We call filter, a set F of nonempty subsets of A such that:

1. if B ∈ F and B′ ∈ F , then B ∩B′ ∈ F .

2. if B ∈ F and B ⊂ B′, then B′ ∈ F .

Definition 2.9.2. We call filterbase on the set A, a set B of nonempty subsets of A such that
if B ∈ B and B′ ∈ B, there exists C ∈ B, C ⊂ B ∩B′.
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A set B of subset of X is a filter base if

• B 6= ∅.

• ∅ /∈ B.

• (B,B′ ∈ B) =⇒ (B ∩B′ ∈ B).

A filter is a filterbase but the converse is false. However, the set of subsets of A which contain
an element of the filterbase B is a filter, i.e. {B ⊂ X | ∃B′ ∈ B, B′ ⊂ B} is a filter.
We say that B is a basis for the filter F , or F is generated by B.

Example 2.9.3. 1. Let X be a topological space; the set of all neighbourhoods of a point x is
a filter Fx.

∃N ∈ Fx such that V ∩N = V ′ ∩N, where V, V ′ ⊂ X

is an equivalence relation denoted Rx. The quotient set X/Rx is called the set of germs
at the point x.

2. Let X be a topological space, then the set of all neighbourhoods of a non empty subset of X
is a filter.

3. Let A ⊂ X, and let x0 ∈ Cl(A). Then the set of the subsets A ∩ N where N is a neigh-
bourhood of x0 in X, is a filter on A.

4. Let X = N, For each n let An be the set of integers greater than n. Then BN = {An | n ∈ N}
is a filterbase on N. The filter generated by BN is called the natural filter.

5. {]x0 − ε, x0 + ε[, where ε > 0} is a filterbase on R.

6. {[x0, x0 + ε[, where ε > 0} is a filterbase on R.

7. {]x0, x0 + ε[, where ε > 0} is a filterbase on R.

8. {]x0 − ε, x0], where ε > 0} is a filterbase on R.

9. {]x0 + ε, x0[, where ε > 0} is a filterbase on R.

10. {]x0 + ε, x0[∪]x0, x0 + ε[, where ε > 0} is a filterbase on R.

2.9.2 Limits and Adherent Points of a Filterbase

Definition 2.9.4. Let (X, τ) be a topological space and B a filterbase on X.

1. A point x0 ∈ X is said to be a limit point of B if every neighbourhood of x0 contains
some B ∈ B i.e.

∀Nx0 neighbourhood of x0,∃B ∈ B : B ⊂ Nx0

2. A point x0 ∈ X is said to be adherent to B if every neighbourhood of x0 meets every
B ∈ B i.e.

∀Nx0 neighbourhood of x0,∀B ∈ B : B ∩Nx0 6= ∅
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2.9.3 Images of Limits and Adherent Points

Notice that the point x0 is adherent to the filterbase B iff x0 is adherent to every element of B.

Definition 2.9.5. Let f be a map from the set A to the topological space X and let B be a
filterbase on A.

• The point x ∈ X is said to be a limit of f w.r.t. B if for any neighbourhood Nx of x, there
exists B ∈ B such that f(B) ⊂ Nx.

• The point x ∈ X is said to be a adherent of f w.r.t. B if for any neighbourhood Nx of x,
for any B ∈ B then f(B) ∩Nx 6= ∅.

Case of the Sequences

Recall that any map N −! X : n 7! xn is called a sequence of points of X and is denoted
(xn)n∈N. Let N be the set of natural integers equipped with the filterbase BN defined above.

1. Saying that x is the limit of this sequence w.r.t. BN means that:

∀Nx, neighbourhood of x, ∃N ∈ N ∀n ≥ N =⇒ xn ∈ Nx

We write lim
n!∞

xn = x. We also say that the sequence converges to x w.r.t. BN.

2. Saying that x is adherent of this sequence w.r.t. BN means that:

∀Nx, neighbourhood of x, ∀N ∈ N ∃n ≥ N =⇒ xn ∈ Nx

For example, letX = R (with the standard topology). The sequence
1

4
, 1−1

4
,

1

5
, 1−1

5
,

1

6
, 1−1

6
, · · ·

has two adherent points 0 and 1 w.r.t. to the filterbase BN.

Remark 2.9.6. It is important to distinguish the adherent points of a sequence w.r.t. to the
filterbase B and the adherent points of the set of all points of the sequence. Any adherent points
of a sequence w.r.t. to the filterbase B is an adherent point of the set but the converse is false.
A sequence is a set, but it is not only a set.

Remark 2.9.7. 1. Let f : N −! X, f(n) = xn. When we say that xn tends to x0, we
mean that every neighbourhood of x0 contains some f(A), which, here, is the set of points
xk where k belongs to the complement of a finite subset of N. Consequently for every
neighbourhood N0 of x0 there is an integer p(N0) such that for every k ≥ p(N0) we have
xk ∈ N0. Conversely, if for every N0, there exits an integer p(N0) such that xk ≥ N0 for
k ≥ p(N0) we see that every N0 contains all the xk for which k belongs to the complement
of a finite subset of N. This in fact amounts to the elementary definition of convergence of
xn to x0.

2. If A is the complement of a finite subset of N, an element, that is, of the natural filter,
f(N) \ f(A) is not, in general, the complement of a finite set of points of the sequence.

For example, x2k+1 = 0, x2k =
1

2k
, k ∈ N. Let A = N \ {0}.

3. If the points or values xn are all distinct, and if X denotes the set of points xn, the image
of the natural filter by the sequence (xn) consists of the complements of finite subsets of X.
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4. Let X denotes the set of points xn. If x0 is adherent to X, x0 is not necessarily an adherent
point of the filter. But if x0 is an adherent point of the sequence (xn), x0 is adherent to

X. For example, on R, the sequence
(

1

n

)
n>0

has the single adherent point 0, but every

point
1

n
is adherent to the set of values of the sequence.

5. Every subsequence of a sequence converging to x0 also converges to x0.

General Case

Let X and Y be two topological spaces and let f be a map from the set X to the set Y . Let
x0 ∈ X and y0 ∈ Y . Let B be the filterbase of the neighbourhoods of x0 in X.

1. y0 ∈ Y is a limit of f w.r.t. B iff

∀Ny0 neighbourhood of y0, ∃A ∈ B such that x ∈ A =⇒ f(x) ∈ Ny0

We write lim
x
B
!x0

f(x) = y0.

Choosing the other filterbases given in the previous example, define other well known limits.

2. y0 ∈ Y is a adherent of f w.r.t. B iff

∀Ny0 neighbourhood of y0, ∀A ∈ B,∃x ∈ A such that f(x) ∈ Ny0

Proposition 2.9.8. Let B be a filterbase on the set X and let f be a map from X to the Hausdorff
space Y .

1. If f has a limit w.r.t. B, then this limit is unique.

2. If f has a limit w.r.t. B, then this limit is the unique adherent point of f w.r.t. B.

Proof:

1. Let y and y′ be two distinct limits of f w.r.t. B. The space Y is Hausdorff, so there exists
two disjoints neighbourhoods Ny and Ny′ of y and y′. There exist A,A′ ∈ B such that
f(A) ⊂ Ny and f(A′) ⊂ Ny′ . Then there exists A′′ ∈ B such that A′′ ⊂ A ∩ A′. Thus
f(A′′) ⊂ Ny ∩Ny′ which is a contradiction because A′′ 6= ∅.

2. Let y be the limit of f w.r.t. B and let A ∈ B. There exists A′ ∈ B such that f(A′) ⊂ Uy.
Then A∩A′ 6= ∅, so f(A∩A′) 6= ∅ and f(A∩A′) ⊂ f(A) ⊂ Uy. Then f(A) ⊂ Ny 6= ∅ and
y is adherent of f w.r.t. B.
Let y′ a second distinct adherent point of f w.r.t. B. There exist disjoint neighbourhoods
Ny and Ny′ of y and y′. Then there exists A ∈ B such that f(A) ⊂ Ny. So f(A)∩Ny′ = ∅
which is a contradiction.

�

Remark 2.9.9. If Y is not Hausdorff, f can have several limits w.r.t. B. For example, let τY
be the trivial topology on Y . Then every point of Y is a limit of f w.r.t. B.

Remark 2.9.10. If f has a limit w.r.t. B, then this limit is adherent. However, what can
happen if f has no limit?
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1. f can have no adherent point. For example, the sequence (0, 1, 2, 3, . . .) in R (with the
standard topology) has no adherent point.

2. f can have a unique adherent point. For example, the sequence (0, 1, 0, 2, 0, 3, 0, 4, . . .) in R
(with the standard topology) has no limit but 0 is the unique adherent point.

3. f can have several adherent points (cf. examples above).

Metric Spaces

In the following of this section, we only consider metric spaces.

Proposition 2.9.11. Let X be a metric space and A ⊂ X and x ∈ X. Then the followings are
equivalent:

1. x ∈ Cl(A).

2. There exists a sequence of points of A which converges to x w.r.t. the filter of neighbourhoods
of x in X.

Proof: ⇐=) Any neighbourhood of x contains at least one xn so intersects A; therefore x ∈
Cl(A).
=⇒) If x ∈ Cl(A), for any n ∈ N∗, there exists xn ∈ A contains in the closed ball of center x and

radius
1

n
. Then, the sequence (xn) converges to x. �

Proposition 2.9.12. Let X be a metric space and let (x1, x2, . . .) a sequence of X and x ∈ X.
Then the followings are equivalent:

1. x is adherent to (x1, x2, . . .) w.r.t. the filter of neighbourhoods of x in X..

2. There exists a subsequence (xn1 , xn2 , . . .) with n1 < n2 < . . . which converges to x w.r.t.
the filter of neighbourhoods of x in X.

Proof: ⇐=) x is adherent of the sequence (xn1
, xn2

, . . .) then it is adherent to the sequence (xn).
=⇒) Suppose x is adherent to (x1, x2, . . .). There exists n1 such that d(xn1

, x) ≤ 1. Then, there

exists n2 > n1 such that d(xn2 , x) ≤ 1

2
and so on. Then, the sequence (xn1

, xn2
, . . .) converges

to x. �

2.9.4 Exercises

1. Show that a finite subset of a metric space has no limit and is therefore a closed set.

2. Let f is a mapping of a set X into a set X ′. Show that:

(a) The image by f of a filter on X is a filter on E′.

(b) The inverse image by f of a filter F ′ on X ′ is a filter on X if every set of F ′ meets
f(X). In particular, if f is a mapping of X onto X ′, the direct and inverse images of
filters are again filters.
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Example: Let (xn) be a sequence of points in a set X, i.e. a mapping of N into X. The
image in X under this mapping of the natural filter BN on N is a filter, but, in general, it
does not consist of the family of complements of finite subsets of the set of values of the
sequence. If for example X consist of a single element x, we have xn = x for all n, and the
image of the filter consisting of the complements of finite subsets of X is a filter consisting
of a single element X, whilst the complements of a finite subset is ∅.

3. Show that the sequence

(
(−1)n

(
1 +

1

n

)
n∈N\{0}

)
does not converge w.r.t. the filterbase

BN but the subset
{

(−1)n
(

1 +
1

n

)}
of R, (with the standard topology), has two adherent

points.

4. Let Xi, i = 1, 2 be two sets and let Fi be a filter on Xi, i = 1, 2. Let X = X1 ×X2 be the
product of X1 and X2. Show that the set {A1×A2 | Ai ∈ Fi, i = 1, 2} is a filterbase on X.

5. Let (X, d) be a metric space and let (x1, x2, . . .) be a sequence of points of X. Show that
a point a ∈ X is adherent point of the sequence w.r.t. the filterbase BN if there exists a
subsequence which admits a as a limit.

6. Let (xn) be a sequence of the metric space (X, d). Show that x0 is adherent to (xn) iff
there exists a strictly increasing function f : N −! N such that for any n ∈ N, f(n) ≥ n
and w.r.t. lim

n 7!∞
xf(n) = x0.
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Chapter 3
Continuous Maps

3.1 Continuous Maps between Metric Spaces

3.1.1 Continuity
A function f : R −! R is continuous at x0 if f(x) tends to f(x0) when x tends to x0, both for
x < x0 and x > x0.
More generally, let (X, dX) and (Y, dY ) be two metric spaces.

Definition 3.1.1. 1. The map f : X −! Y is said to be continuous at the point x0 ∈ X
if ∀ε > 0,∃δ > 0,∀x ∈ X satisfying dX(x, x0) < δ, then dY (f(x), f(x0)) < ε.

2. The map f : X −! Y is said to be continuous if it is continuous at x for any x ∈ X.

Remark 3.1.2. This definition can be rephrased in terms of balls as follows: The map
f : X −! Y is said to be continuous at the point x0 ∈ X iff ∀ε > 0,∃δ > 0 such that
f
(
BX(x0; δ)

)
⊂ BY (f(x0); ε).

In the definition, the strict inequalities can be replaced by ≤.
If we replace the metrics dX and dY by some strongly equivalent metrics, then it does not change
the continuity of f .

Such a characterization is not possible for an arbitrary topological space, so we had to find
another way to define continuity.

Proposition 3.1.3. The map f : X −! Y is continuous iff f−1(O) is open (resp. closed) for
any open (resp. closed) set O ⊂ Y .

Proof: =⇒) Let O ⊂ Y be an open set and let x ∈ f−1(O). Then f(x) ∈ O. There exists
ε > 0 such that BY (f(x); ε) ⊂ O. The map f is continuous, so there exists δ > 0 such that
f(BX(x; δ)) ⊂ BY (f(x); ε), then f(x′) ∈ O for all x′ ∈ BX(x; δ) and BX(x; δ) ⊂ f−1(O) which
is open.
⇐=) LetO ⊂ Y be an open set, then f−1(O) is open. Let x ∈ X. Given ε > 0 the ballBY (f(x); ε)
is open, hence f−1(BY (f(x); ε)) is an open set containing the point x. Then ∃δ > 0 such that
BX(x; δ) ⊂ f−1(BY

(
f(x); ε)

)
. Therefore ∀ε > 0,∃δ > 0 such that f

(
BX(x; δ)

)
⊂ BY (f(x); ε).

�
In this proposition, the property characterizing continuity is topological and it will be extended
to any topological spaces.
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3.1.2 Uniform Continuity

Definition 3.1.4. Let (X, dX) and (Y, dY ) be two metric spaces. A map f : X −! Y is
uniformly continuous if for any ε > 0, there exists δ > 0 such that for every x, x′ ∈ X with
dX(x, x′) < δ, we have dY (f(x), f(x′)) < ε.

For continuity at each point, one takes an arbitrary ε, and then there must exist some δ.
While for uniform continuity, δ must work for all points.
A uniformly continuous map is continuous but the converse is false. For example, consider the

function f : R −! R given by f(x) =
1

x
.

Figure 3.1

3.1.3 Exercises

1. Show that the function f : R −! R, x 7−!
1

x
is not uniformly continuous.

2. Show that the function f : R −! R, x 7−! x2 is not uniformly continuous.
What about the function f|[a,b] for any a, b ∈ R, a < b?
More generally, is every continuous function on any closed bounded interval uniformly
continuous?

3.1.4 Isometries

Let us now consider the maps between metric spaces which respect the distances.

Definition 3.1.5. Let (X, dX) and (Y, dY ) be two metric spaces. An isometry f : X −! Y is
a bijection such that for any a, b ∈ X, dX(a, b) = dY

(
f(a), f(b)

)
.
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Let (X, dX) be a metric space and let f : X −! Y a bijection from X to the set Y . We define a
distance dY on Y by dY

(
f(x), f(y)

)
= dX(x, y) (exercise, verify that dY is a distance). Therefore,

f is an isometry from (X, dX) onto (Y, dY ).

Example 3.1.6. Let

f : R −−−! ]− 1,+1[

x 7−−−! x

1 + |x|

which is a bijection (exercise) such that

f−1 :]− 1,+1[ −−−! R

x 7−−−! x

1− |x|

Let [−1,+1] be the closure of ]−1,+1[ (for the standard topology) and R denotes R∪{−∞,+∞}
where −∞ and +∞ are two new elements. Notice that we dont assign any meaning to the two
elements −∞ and +∞. We extend the bijection f to a bijection from R onto [−1,+1] by saying
f(−∞) = −1 and f(+∞) = +1.
[−1,+1] is a metric space for the distance d(x, y) = |x − y| (exercise). Let define a metric d′
on R by d′(x, y) = |f(x) − f(y)|. Then with this distance d′, R is a metric space. Notice that

for x ≥ 0, d′(∞, x) =
1

1 + |x|
and for x ≤ 0, d′(−∞, x) =

1

1 + |x|
. Moreover, d′ restricts to R

is a metric which is different from the standard metric |x − y|, i.e. |x − y| 6= d′(x, y) for some
x, y ∈ R.

3.1.5 Exercises

1. Show that an isometry f is a continuous map and the inverse map f−1 is also continuous.

2. Consider the function

f : R −−−! R
x 7−−−! x− 1 if x ≤ 3

x 7−−−! 1

2
(x+ 5) if x > 3

Find an open set O of R such that f−1(O) is not open.
Deduce a property of the function f .
What about if the function f : R \ {3} −! R?

3. Let R2 be the real plane equipped with the two distances d1, d2 defined as follows:
d1(x, y) = |x1 − y1|+ |x2 − y2| and d2(x, y) =

√
(x1 − y1)2 + (x2 − y2)2.

Show that (R2, d1) and (R2, d2) are not isometric.
(Hint: Suppose there exist some isometry f : (R2, d1) −! (R2, d2). Let a = (1, 1), b =
(−1, 1), c = (1,−1), e = (−1,−1) be four points. Then 2 = d1(a, b) = d1(a, c) = d1(b, e) =

d1(c, e) =
1

2
d1(a, e). Thus, for the Euclidean metric d2, both f(b) and f(c) are the middle

of the segment [f(a), f(e)] so f(b) = f(c)
)
(cf exercise 2.3.4.9).
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4. Let (X, d1) and (X, d2) be two metric spaces on the same set. Then the following assertions
are equivalent

(a) A ⊂ X is open for d1 iff A is open for d2.
(b) For any x ∈ X and any r > 0, there exist r′ > 0, r′′ > 0 such that Bd1(x; r′) ⊆

Bd2(x; r) and Bd2(x; r′′) ⊆ Bd1(x; r).
(c) The identity maps (X, d1) −! (X, d2) and (X, d2) −! (X, d1) are continuous.

3.2 Continuous Maps between Topological Spaces
A metric space is a topological space. We defined the continuity of maps between metric spaces
using the metric and we showed that continuity can be given using topologies. So, there exists
a natural way to extend the definition of continuity to any topological spaces.

Definition 3.2.1. Let (X, τX) and (Y, τY ) be two topological spaces. The map f : X −! Y is
said to be continuous if f−1(O) is open, i.e. f−1(O) ∈ τX , for any open set O ∈ τY .

If there is no ambiguity on the topologies, we don’t mention them for simplicity. If not, we
denote f : (X, τX) −! (Y, τY ).
The map f : X −! Y from the set X to the set Y can defined several continuous maps or not,
f : (X, τX) −! (Y, τY ) according to the choices of the topologies τX and τY .
For example, consider the map

f : R −−−! R

x 7−−−!
{
−1 if x ≤ 0
+1 if x > 0

- defines a map f : (R, τ) −! (R, τ) which is not continuous, where τ is the standard topology,

- defines a continuous map f : (R, τ1) −! (R, τ2) where either τ1 is the discrete topology, or if
τ2 is the trivial topology.

Proposition 3.2.2. f : X −! Y is continuous iff f−1(C) is closed for any closed set C in Y .

Proof: It is enough to notice that X \ f−1(C) = f−1(Y \C). �

Remark 3.2.3. Notice the “duality” open  ! closed. In other words, we could also define the
continuous maps with closed sets in the similar terms as we define with open sets.
The continuous maps are the morphisms in the category of topological spaces (where the objects
are the topological spaces).

Remark 3.2.4. A morphism in a category respects the structures on the objects. For example,
in the category of groups, a morphism sends the composite of two elements to the composite of
the images. Another example in the category of vector spaces, a morphism is a linear map which
sends any linear combination of vectors to the linear combination of the images.
In the category of the topological spaces, a morphism is a continuous map and the definition
seems strange because the reverse image of an open set has to be open.
We have to recall that a topology is defined by taking some subsets. So, we have to consider not
the map from a topological space to a topological space, but the map from the set of subsets of
the space to the set of subsets of the other set. In other words, we have to consider not the map
f : X −! Y but the map f : P(X) −! P(Y ), and we saw that f does not respect the operations
on sets, union, intersection, although the map f−1 : P(Y ) −! P(X) respects these operations,
and consequently, the conditions defining the topologies (cf. 1.3.3).
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A map f : X −! Y that sends open (resp. closed) sets onto open (resp. closed) sets is called
open (resp. closed) map.

Example 3.2.5. 1. If X and Y are metric spaces, then we recover the definition of continuity
given in the previous section.

2. Let (X, τ) be a topological space and Id : X −! X be the identity map (Id(x) = x for any
x ∈ X). Then Id is continuous.

3. However let (X, τ1) and (X, τ2) be two topological spaces on the same set X 6= {x} such
that τ1 is the trivial topology and τ2 is the discrete topology. Then Id : X −! X, where the
domain is (X, τ1) and the range is (X, τ2), is not continuous. (Exercise). Is Id continuous
if the domain is (X, τ2) and the range is (X, τ1)?

Another characterization of continuity using filters.

Proposition 3.2.6. Let X,Y be two topological spaces. Then a map f : X −! Y is continuous
iff f sends converging filters to converging filters.

Proof: =⇒) Suppose the map f continuous. Let F be a filter in X converging to the point
x, i.e. x is a limit point of F . We have to show that f(F) converges to f(x). Let N be a
neighbourhood of f(x). There is an open set Of(x) ⊂ N . So f−1

(
Of(x)

)
is open and contains

x, which means that f−1
(
Of(x)

)
∈ F by assumption. Hence, f

(
f−1

(
Of(x)

))
∈ f(F). Since

f
(
f−1

(
Of(x)

))
⊂ Of(x) ⊂ N , we have N ∈ f(F).

⇐=) Suppose the map f preserves converging filters. Let Of(x) be an open set containing f(x).
We have to find an open set O ⊂ X containing x, such that f(O) ⊂ Of(x). Let F be the
neighbourhood filter of x. So, F converges to x. By assumption, f(F) converges to f(x). Since
O is an open neighbourhood of f(x), we have ∈ f(F), or f(F ) ⊂ O for some F ∈ F . Since F is a
neighbourhood of x, it contains an open neighbourhood U of x. Furthermore, f(U) ⊂ f(F ) ⊂ O.
Since x is arbitrary, the map f is continuous. �

Remark 3.2.7. Let f : X −! Y be a continuous map. It is wrong to say

• for any open set O ⊂ X, f(O) is open.

• for any closed set F ⊂ X, f(F ) is closed.

A map f : X −! Y is said to be open if for any open set O ⊂ X, f(O) is open.
A map f : X −! Y is said to be closed for any closed set F ⊂ X, f(F ) is closed.

Example 3.2.8. 1. Let R be the topological space, with the standard topology and let
f : R −! R be the constant map onto x0. Then f is continuous but, for any open set
O ⊂ R, f(O) = {x0} which is not open.

2. Let R be the topological space with the standard topology and let f : R −! R such that

f(x) =
1

1 + x2
. Then f is continuous, and f(R) =]0, 1] which is neither closed nor open.

Proposition 3.2.9. Let X,Y and Z be three topological spaces and let f : X −! Y and
g : Y −! Z be two continuous maps. Then g ◦ f : X −! Z is continuous.

Proof: (exercise) �
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Extension by continuity

Let f : A −! R be a function defined and continuous on a subset A of the topological space X.
Is it possible to extend f to a continuous function g : X −! R?

Example 3.2.10. • Let f(x) = x if x < 0 and f(x) = x + 1 if x > 0. Then f cannot be
continuously extended to R.

• Let f(x) = x sin
1

x
defined and continuous on R\{0}. Then f can be continuously extended

to the function g : R −! R such that g(0) = 0.

The next theorem is given without any proof,

Proposition 3.2.11 (Tietze1 extension). Let A be a closed set of the metric space (X, d), and
f : A −! R a continuous map. Then there exists a continuous function g : X −! R such that
the restriction g|A = f .

3.2.1 Exercises
1. Let f : X −! Y be a continuous map. Find out whether f remains continuous w.r.t.

(a) A finer topology on X and the same topology on Y .
(b) A coarser topology on X and the same topology on Y .
(c) The same topology on X and a finer topology on Y .
(d) The same topology on X and a coarser topology on Y .

2. Show that every function from a discrete topological space is continuous. Analogously,
verify that every function to a trivial topological space is continuous.

3. As an application of the previous exercise: Let Y be a topological space and let
α : [0, 1] −! Y, β : [0, 1] −! Y be two continuous maps such that α(1) = β(0) where
[0, 1] is equipped with the topology metric given by d(x, y) = |x− y|. Let

γ : [0, 1] −−−! Y

t 7−−−!
{
α(2t) if 0 ≤ t ≤ 1

2
β(2t− 1) if 1

2 < t ≤ 1

Show that γ is a continuous map.

4. Let f : X −! Y be a map between the two topological spaces (X, τX), (Y, τY ).
Characterize the fact that f is not continuous.

5. Given the two maps f and g

f : R −−−! R
x 7−−−! x+ 1 if x ≥ 0

x 7−−−! x if x < 0

1Heinrich Franz Friedrich Tietze (August 31, 1880 - February 17, 1964) was an Austrian mathematician, famous
for the Tietze extension theorem on functions from topological spaces to the real numbers. He also developed
the Tietze transformations for group presentations, and was the first to pose the group isomorphism problem.
Tietze’s graph is also named after him; it describes the boundaries of a subdivision of the Möbius strip into six
mutually-adjacent regions, found by Tietze as part of an extension of the four color theorem to non-orientable
surfaces.

56



3.3. HOMEOMORPHISMS

g : R −−−! R
x 7−−−! x− 1 if x ≥ 0

x 7−−−! x if x < 0

Are the maps f and g continuous? What about g ◦ f?

6. Let f : X −! Y be a map.
Show that f is continuous iff Cl(f−1(B)) ⊂ f−1(Cl(B)) for any B ⊂ Y .

7. (a) Let X and Y be two topological spaces and let F,G be closed subsets of X such that
X = F ∪ G. Let f : F −! Y ; g : G −! Y be continuous functions such that
f(x) = g(x) for all x ∈ F ∩ G.
Show that there exits a unique function h : X −! Y such that h(x) = f(x) if x ∈ F
and h(x) = g(x) if x ∈ G and show that h is continuous.

(b) More generally, let X and Y be two topological spaces and let f : X −! Y be a map.

Let X =

n⋃
i=1

Ai where Ai is closed for any i.

Show that if the restriction f|Ai is continuous for any i, then f is continuous.

8. Prove the assertions of Remark 3.2.7.

9. Let X and Y be two topological spaces and let f : X −! Y be a map. Show that f is
continuous iff for any x ∈ X, f(x) is the limit of the filter of neighbourhoods of x, i.e.
limx′!x f(x′) = f(x).

10. Let P = {{2k − 1, 2k}}k∈Z be the partition of Z which defines a topology τPZ on Z. This
topology is called odd-even topology. Let (N, τPN) be the topological space with the odd-
even topology. Show that the map

f : N −−−! Z
2k 7−−−! k

2k − 1 7−−−! k

is continuous.

11. Let A1(F) be the Zariski affine line and let f : A1(F) −! A1(F) be a map.
Show that f is continuous w.r.t. Zariski topologies if the inverse image of any finite set is
a finite set.

3.3 Homeomorphisms
Definition 3.3.1. Let X and Y be two topological spaces. The map f : X −! Y is said to be
an homeomorphism if f and f−1 are continuous bijections. We say that the topological spaces
X and Y are homeomorphic and we denote X ∼= Y .
The map f is said to be an embedding if f is a homeomorphism onto its image.

Remark 3.3.2. 1. Homeomorphisms are isomorphisms in the category of topological spaces.

2. Homeomorphisms induce one-to-one correspondences between open sets in X and Y and
between closed sets in X and Y .
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3. Let (X, τ1) and (X, τ2) be two topological spaces on the same set X, where τ1 > τ2. For
example, τ1 is the discrete topology, and τ2 is the trivial topology. Then, the identity map
IdX : (X, τ1) −! (X, τ2) is a continuous bijection, but not a homeomorphism.

Proposition 3.3.3. Let f : X −! Y be an homeomorphism and let A ⊂ X. Then

1. f(Cl(A)) = Cl(f(A)).

2. f(Int(A)) = Int(f(A)).

3. f(Fr(A)) = Fr(f(A)).

4. N is a neighbourhood of x ∈ X iff f(N) is a neighbourhood of f(x) ∈ Y .

Proof: �

Example 3.3.4. An isometry between two metric spaces is an homeomorphism.

Remark 3.3.5. A homeomorphism between two metric spaces is not necessarily an isometry.

Example 3.3.6. Let X = Y = R, let dX(a, b) = |a− b|, dY (a, b) = 2|a− b| be the distances on
X and Y and f = IdR. Then f is an homeomorphism but it is not an isometry (exercise).

Proposition 3.3.7. Let f : X −! Y be a bijection and let τY be a topology on Y . Then there
exists a unique topology τX on X such that f is a homeomorphism (O ∈ τX ⇐⇒ f(O) ∈ τY ).

Proof: The topology τX is given by the subsets f−1(O) where O ∈ τY .
By the properties of the inverse map f−1, τX is a topology.
It follows that both f and f−1 are continuous, so f is a homeomorphism. �

Remark 3.3.8. Let f : X −! Y a bijective continuous map. Then f is not necessarily a
homeomorphism, i.e. the map f−1 can be non continuous. Let give an example.
The following map

f : [0, 2π[ −−−! S1

t 7−−−! (cos t, sin t)

is a continuous bijection. But the reverse map f−1 is not continuous. Consider the open subset
[0, π[⊂ [0, 2π[. Then f([0, π[) = {(x, y) ∈ S1 | y > 0} ∪ {(1, 0)} which is not open although [0, π[
is open in [0, , 2π[.

3.3.1 Exercises

1. Let f : [α, β] −! [a, b] be a surjection such that if x < y then f(x) < f(y) for all x and y.
Show that f is continuous, bijective and f−1 is continuous.

2. Let a, b, c and d ∈ R. Let define the following map:

f : R −−−! R

t 7−−−! c+
(t− a)(d− c)

(b− a)

is an homeomorphism as a map from [a, b] onto [c, d].
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3. Let R2 be the Euclidean real plane. Show that a circle and a square are homeomorphic
subspaces.

4. Let X,X ′ and Y the three subspaces of R3, the Euclidean space, where X,X ′ and Y are
made of two circles as in the picture.

Are X and Y homeomorphic? (X ′ and Y homeomorphic?)
Same question, but X,X ′ and Y are two subspaces of R2.

5. Show that the following subspaces of the Euclidean plane are homeomorphic,

(a) A = {(x, y) | y > 0}.
(b) B = {(x, y) | x > y > 0}.
(c) C = {(x, y) | x2 + y2 < 1} \ {(x, y) | x = 2y, x > 0}.

6. Let S2 = {(x, y, z) ∈ R3 | x2 +y2 +z2 = 1} be the sphere and let N = (0, 0, 1) be the North
pole. Define the map:

f : S2 \ {N} −−−! R2 = {(x, y, 0) | x, y ∈ R} ⊂ R3

(x, y, z) 7−−−!
(

x

1− z
,

y

1− z
, 0

)
Show that f is a homeomorphism and define f−1.

7. The space of real n× n-matrices is a space homeomorphic to Rn2

. What about the space
of complex n× n-matrices?

8. Let f : C −! C be the map z 7−! z2. Let H = {z = x+ iy ∈ C | y > 0}.
Determine f(H). Is the restriction f|H a homeomorphism onto its image?

9. Consider the topological spaces (R, τ) where τ is the standard topology, and the product
space R2.

(a) Is the function f : R −! R, x 7−! x2 a homeomorphism onto its image f(R)?

(b) Is the function g : R −! R2, x 7−! (x, x2) a homeomorphism onto its image g(R)?

10. Let A1(F) be the Zariski affine line and let f : A1(F) −! A1(F) be any bijection. Show
that f is a homeomorphism w.r.t. Zariski topologies.

11. Let (X, τX) and (Y, τY ) be two topological spaces and f : X −! Y a homeomorphism.
Characterize f if the topologies are as follows:
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(a) A finer topology on X and the same topology on Y .

(b) A coarser topology on X and the same topology on Y .

(c) The same topology on X and a finer topology on Y .

(d) The same topology on X and a coarser topology on Y .

3.4 Classification of Topological Spaces
To classify some mathematical objects, for example, the sets, or the vector spaces, needs to
consider these objects up to isomorphism, for example, bijections for the sets, linear isomorphisms
for the vector spaces. In general, the classification has no solution, and we have to weaken
conditions.

3.4.1 Some Examples
Sets

Consider the sets {a, b}, {x, y}, {1, 2}, {©,�}, . . .. For any two such sets, there exist some bijec-
tions between them, i.e. all these sets are “equivalent” and the equivalence class is the cardinality,
2. Notice that N and R are infinite sets, but there does not exist a bijection between them, so
they have not the same cardinality.
Two sets with the same cardinality have the same properties as sets. But they can have distinct
properties if we consider some structures on them, (for example, algebraic structures, topological
structures, etc.).
Then, the problem of classification of sets is completely solved.

Vector spaces

The classification of the vector spaces consists to consider the linear isomorphisms between vector
spaces.
Any vector space has a basis, and any two bases of a vector space have the same cardinality.
Two vector spaces are isomorphic iff they have isomorphic bases.
Then, the finite-dimensional vector spaces are classified by their dimension. For any vector
spaces, it is the cardinality of their bases.

Groups

The classification of groups consists to consider the isomorphisms between groups. It is an
extremely difficult question which has only partial answers.
A complete classification is known for finitely generated Abelian groups. This is given by the
fundamental theorem of finitely generated Abelian groups: Every finitely generated Abelian
group is a direct sum of finitely many non-split cyclic subgroups some of which are finite and
primary, while the others are infinite. In particular, finite Abelian groups split into a direct sum
of primary cyclic groups. Such splittings are, in general, not unique, but any two splittings of
a finitely generated Abelian group into direct sums of non-split cyclic groups are isomorphic,
so that the number of infinite cyclic summands and the collection of the orders of the primary
cyclic summands do not depend on the splittings chosen. These numbers are called invariants
of the finitely generated Abelian group. They constitute a complete system of invariants, in the
sense that two (finitely generated) Abelian groups are isomorphic if and only if they have the
same invariants. Each subgroup of a finitely generated Abelian group is itself finitely generated.
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3.5 Homeomorphism Problem. Topological Invariants
The main problem in topology is to find out whether two topological spaces are homeomorphic
or not, it is the homeomorphism problem .
The equivalence relation for topological spaces is the homeomorphism, which places spaces of
the same topological types into the same class.
In order to show that two topological spaces X and Y are homeomorphic, one need only construct
a homeomorphism between them.
To show they are not homeomorphic is trickier. Since we cannot consider and then reject every
possible function in turn, we instead need to find a topological property which one has and the
other does not. This problem is far to be solved and we have to weaken to conditions.
In a nutshell, a topological property is something one can say about a space in terms of open
sets. Alternatively, it is a property which is preserved by any homeomorphism.

Definition 3.5.1. A property of topological spaces is called topological provided that has if a
space X has the property, then so does any homeomorphic space Y .
If X has the property, but Y does not, then X and Y are not homeomorphic.

Example 3.5.2. • The Euclidean spaces Rn and Rm for n 6= m are not homeomorphic.

• The spheres Sn and Sm for n 6= m are not homeomorphic.

• In the Euclidean plane R2, the circles and the squares are homeomorphic.

Properties that are shared by homeomorphic spaces are called topological properties and
invariants.
A topological invariant is a map that assigns the same object to spaces of the same topological
type, i.e. which are homeomorphic. An invariant f is only useful through the following:

f(X) 6= f(Y ) =⇒ X 6∼= Y

A trivial invariant assigns the same object to all spaces and is therefore useless.
The complete invariant assigns different objects to non-homeomorphic spaces, which is the best
situation.
Most invariants fall in-between these extremes.
The most powerful an invariant, the harder it is to compute it. As we relax the classification to
be coarser, the computation becomes easier.
The invariants of topological spaces given by maps to algebraic structures, for example, some
integers, or polynomials, or groups, vector spaces, . . ., or by the map to combinatorial structures,
are, in general, easier to compute than invariants given by a map to topological structures. This
is the subject of algebraic topology.

Example 3.5.3. Fixed-point Brouwer2 Theorem
It does not exist continuous map f : D2 −! S1, where D2 is the disk, which is an extension
Id : S1 −! S1.
Suppose such map f exists, i.e. the diagram is commutative (f ◦ ι = Id).

S1
IdS1 //� r

ι
##

S1

D2

f

;;

2Luitzen Egbertus Jan Brouwer; 27 February 1881 - 2 December 1966), usually cited as L. E. J. Brouwer but
known to his friends as Bertus, was a Dutch mathematician and philosopher, who worked in topology, set theory,
measure theory and complex analysis. He was the founder of the mathematical philosophy of intuitionism.
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We will show in chapter 7, how we associate to any topological space its fundamental group, Z
for S1, 0 for D2 and to any continuous map, some homomorphism, IdZ for IdS1 , the constant
homomorphism for ι, so that the diagram of continuous maps is transformed into the following
diagram of homomorphisms of groups

Z IdZ //

##

Z

0
f∗

;;

Such a commutative diagram cannot exist, i.e. there does not exist any homomorphism f∗ such
that f∗ ◦ 0 = IdZ, so there does not exist a continuous map f .
The question was initially topological and it becomes algebraic. However, it only gives an answer
if the algebraic problem has no solution.

62



Chapter 4
Topological Constructions

4.1 Introduction

In the chapter one, we showed how to construct some sets from some given sets and maps, the
constructions have to satisfy the universal mapping property. Our purpose is to make the similar
constructions when the sets are equipped with topologies and to construct some new topological
spaces satisfying the universal mapping property, i.e. to consider the category of topological
spaces.
Let us give two examples as follows. Let (X, τ) be a topological space. Given a map f from a
set Y to the set X, the goal is to define a “suitable” topology τY on Y such that the map f is
continuous, i.e. f−1(O) ∈ τY for any O ∈ τ .

Dually, let (X, τ) be a topological space. Given a map f from the set X to a set Y , the goal is
to define a “suitable” topology τY on Y such that the map f is continuous, i.e. f−1(O) ∈ τ for
any O ∈ τY .

In both cases, there exists an obvious solution. For the first case, take τY as the discrete topology
and in the second case , τY the trivial topology. But generally, there exist many more topologies,
coarser topologies in the first case and finer in the second case.
The “suitable” topology will be the coarsest in the first case and the finest in the second case.

4.2 Initial Topology

4.2.1 Topological Subspace - Induced Topology

Let us begin with the following example. Let (X, dX) be a metric space and Y ⊂ X. Then,
the metric dX induces a metric dY making Y a metric space (Y, dY ). Let y, y′ ∈ Y then
dY (y, y′) := dX(y, y′). Let BX(x0; r) = {x ∈ X | dX(x0, x) < r} be the open ball of X of center
x0 and radius r. For x0 ∈ Y , we have the open ball BY (x0; r) = {y ∈ Y | dY (x0, y) < r} of
(Y, dY ). It is clear that BY (x0; r) = BX(x0; r) ∩ Y .

Let (X, τ) be a topological space and let A ⊂ X be a subset. We want to define a “suitable”
topology on A from the topology τ on X.
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Remark 4.2.1. We have two sets X and A with a relation between them. In a first step, we
must translate this relation in terms of morphism, i.e. of map. This is a general principle.

Let us pointed out that the subset A ⊂ X could be written (in terms of morphism in the category
of sets) as the inclusion (canonical map) ι : A ↪−! X where ι(a) = a for any a ∈ A. The problem
is to defined a topology τA on A such that ι is a morphism in the category of topological spaces,
i.e. ι is a continuous map. For example, the discrete topology on A makes the map ι continuous
but it does not depend on the topology τ on X. We can define some other topologies making
the map ι continuous.
The “suitable” topology is the coarsest (i.e. weakest or smallest) one making ι continuous. It is
defined as follows (exercise):

τA = {O ∩A | O ∈ τ}.

Then the map ι : (A, τA) −! (X, τ) is continuous and the topology τA is defined from the
topology τ . Moreover, τA is the smallest set with this property, i.e., it is the coarsest (i.e.
weakest or smallest) topology.

Definition 4.2.2. The topology τA is called the induced topology and (A, τA) is called a topo-
logical subspace of (X, τ).

All the finer topologies than τA make the map ι : A ↪−! X continuous. So, why do we choose
the coarsest topology?

Universal Mapping Property : Let (A, τA) be a subspace of (X, τ),
i.e. τA is the coarsest topology making ι continuous.
Let (Z, τZ), f : Z −! X continuous map such that f(Z) ⊆ A. There
exists a unique map h such that f = ι ◦ h. We have h(z) = f(z) for any
z ∈ Z.
The map h is continuous: Let OA ∈ τA, then OA = O ∩A where O ∈ τ .
h−1(OA) = h−1(O ∩A) = h−1(ι−1(O)) = f−1(O) ∈ τZ .
If τ ′ % τA, (ι remains continuous), there exist O′ ∈ τ ′ \ τA such that
h−1(O′) 6= f−1(O) for some O ∈ τ . Then h may be not continuous

Z
f

##
h
��
A �
� ι // X

Example 4.2.3. Let A = X,Z = X, τX = τZ 6= τdiscrete and f = Id, ι = Id. Let τA = τdiscrete,
then f = ι ◦ h where h = Id. The maps f and ι are continuous, but h is not. Then for any
a ∈ A, h−1({a}) = {a} and there is some {a} /∈ τX , so h is not continuous.

Injections

More generally, let A be a set and let f : A −! X be an injection. Then f = ι ◦ g where
g : A −! f(A) is a bijection and ι : f(A) ↪−! X is the inclusion.
We have the following commutative diagram:

A
f //

g $$

X

f(A)
, �

ι

::

Let τ be a topology on X. Let τf(A) be the induced topology on f(A) ⊂ X.
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Definition 4.2.4. The induced topology τA on A is the topology making the map g : A! f(A),
an homeomorphism g : (A, τA) −!

(
f(A), τf(A)

)
.

O ∈ τA ⇐⇒ ∃ O′ ∈ τX such that O = f−1(O′ ∩ f(A)).

The map f is an embedding if the topology on A is such that the bijection g is a homeomorphism
where f(A) is a subspace of X.

Proposition 4.2.5. Let A be a set and let f : A −! X be an injection and let τ be a topology
on X. The subset F ⊂ A is closed (for the topology τA) iff F = f−1(F ′ ∩ f(A)) where F ′ is
closed in X.

Proof: (exercise) �

Remark 4.2.6. Let A ⊂ X where (X, τ) is a topological space. Then (A, τA) is a topological
space and, as such, A is open and closed for the topology τA but, in general, A is neither open
nor closed for the topology τ .
An open set for the induced topology for A is not necessarily open for the topology of the space
X. For example, consider the subset R× {0} ⊂ R2 equipped with the Euclidean topology. There
is only one open set in R × {0} for the induced topology which is open in R2, it is ∅. It is
sufficient to consider the open intervals ]a, b[×{0}. Let (x, 0) where a < x < b, then there is no
ball B(x, r) ⊂ R2 contained in ]a, b[×{0}.

Example 4.2.7. Let [0, 1[ be a subset of R equipped with the standard topology. Then [0, 1[ is
neither open nor closed. But as a topological subspace (with the induced topology), it is both open
and closed.

Proposition 4.2.8. Let (A, τA) be the subspace of the topological space (X, τX). Let (Y, τY ) be
some topological space and f : Y −! A be a map. Then f is continuous iff ι ◦ f is continuous.

Proof: (exercise) �

4.2.2 Retractions

Definition 4.2.9. Let A ⊂ X be a subspace of the topological space X. The continuous map
ι : A −! X has a retraction r : X −! A if r is continuous and the restriction r|A = IdA. The
subspace A is called retract.

Example 4.2.10. • Let a ∈ X, then the map r : X −! {a} is a retraction.

• Let a, b ∈ X be two distinct points of X. For example, let X = [0, 1] be the subspace
of R with the usual topology, and a = 0, b = 1. Then it does not exist a retraction
r : [0, 1] −! {0, 1}.
Any closed interval of R is a retract of R. Let [a, b] and r : R −! [a, b], r(x) = a if
x ≤ a, r(x) = x if a ≤ x ≤ b and r(x) = b if x ≥ b. Then r is a retraction.
But an open interval ]a, b[ is not a retract. If r(x) = x for any a < x < b, then by continuity
of r, we have r(b) = b, thus, there is no continuous function on R with image ]a, b[.

We summarize the characterization of the retraction in the following equivalent statements. Let
A ⊂ X and r : X −! A be a continuous map.

1. r is a retraction.

2. r(a) = a, ∀a ∈ A. 65
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3. r ◦ ι = IdA, i.e. r is a left inverse of the inclusion. A
ι //

IdA

%%
X

r // A

4. r : X −! A is an extension of the identity map A −! A.

There is a generalization for any injection.
Let A and X be two topological spaces, f : A −! X a continuous map.

Definition 4.2.11. The map f : A −! X has a retraction if there exists a continuous map
r : X −! A such that r ◦ f = IdA.

A
f //

IdA

%%
X

r // A

If f has a retraction, then f is injective and r is surjective. So f defines a bijection from A onto
f(A) that we also call f .
The set f(A) inherits of two topologies, the topology τ1 as subspace of (X, τX) and the topology
τ2 induces from the topology τA by the bijection f : A −! f(A) and τ1 = τ2.

Proposition 4.2.12. Let f : Y −! X be a continuous map and Z be a topological space. There
is a retraction r : X −! Y iff every continuous map g : Y −! Z has an extension to a continuous
map h : X −! Z, i.e. h ◦ f = g.

Proof: It follows from the commutative diagram. Y
f //

IdY

%%

g
##

X

h
��

r // Y

g
{{

Z
Take h := g ◦ r and we have h ◦ f = g ◦ r ◦ f = g.
Conversely, Let Z = Y and g = IdY then there exists a map that we call r : X −! Y such that
r ◦ f = IdY . �

In particular, let Z = f(Y ), then Y
f //

IdY

$$

f̄ !!

X

h

��

r // Y

f̄}}
f(Y )

where f̄ : Y −! f(Y ), y 7−! f(y) is a

homeomorphism.
We also have the commutative diagram f(Y )

ι

��
Y

f //

IdY

::

f̄
==

X
r // Y

f̄
aa

These two diagrams altogether gives the following f(Y )
ι
//

Idf(Y )

))
X

h
// f(Y ) and h is a retrac-

tion.
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Fixed Point Property

If a space X is such that every continuous map of X into itself has a fixed point, then X is said
to have the fixed point property.

Proposition 4.2.13. A retract of a space with the fixed point property also has the fixed point
property.

Proof: Suppose X has the fixed point property and A is a retract of X. let f : A −! A be a
continuous map. Then f extends to a continuous map h : X −! A. By assumption, there is an
x0 ∈ X such that h(x0) = x0. But since h maps into A, let x0 ∈ A, so, f(x0) = h(x0) = x0 and
f has also a fixed point at x0. �

4.2.3 Exercises
1. Let (X, d) be a metric space and A a subset of X.

(a) Show that there exists a metric dA on A induced by the metric d.
(b) The metric d defines a topology τd on X, then an induced topology τA on A. The

metric dA defines a topology τdA on A. Compare the two topologies τA and τdA .
(c) Let Σ be a basis for the topology τ onX and A ⊂ X. Show that ΣA = {V ∩A | V ∈ Σ}

is a basis for the induced topology on A.

2. A continuous map f : X −! Y is an embedding if the map f̃ : X −! f(X) is a homeo-
morphism.
Given a topological space, show that the inclusion of a subspace into the space is an em-
bedding.

3. Let (X, τ) be a topological space and B ⊂ A ⊂ X. Let τA (resp. τB) be the induced
topology on A ⊂ X (resp. B ⊂ X and τBA the induced topology on B ⊂ A. Show that
τAB = τB .

4. Show that a subspace of a Hausdorff space is Hausdorff.

5. Show that a retract A of a Hausdorff space X is necessarily closed in X. (Hint: Consider
the two maps ι ◦ r and IdX and y /∈ {x ∈ X | ι(r(x)) = IdX(x). Then ι(r(y)) 6= IdX(y).
Apply Hausdorff property to ι(r(y)) and Idx(y) and the continuity of the two maps ι ◦ r
and IdX .)

6. Show that a map r : X −! X such that r2 = r is retraction.

7. Show that R with the standard topology has a countable subspace where the induced
topology is discrete.
Show that there is no uncountable subspace where the induced topology is discrete.

8. Let (X, d) be a metric space and let A ⊂ X. Then A is a metric space. Show that the
topology on A defined by the metric coincides with the induced topology.

9. Let Y be a subspace of X. If A is closed in Y , and if Y is closed in X, show that A is
closed in X

10. Let A be a subspace of the topological space (X, τ), and B ⊂ X.
Prove that Cl(A∩B) ⊂ Cl(B)∩A, where the first closure is taken in τA, the second closure
is taken in τ .
Show that the equality does not hold in general.
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11. Let R2 be the Euclidean plane and let a, b be two distinct points of R2. Let f : R −! R2

be the map defined by t 7−! tb+ (1− t)a. Show that f is an injection. Define the induced
topology on R via f . Same question where we replace the Euclidean topology on the real
plane R2 by the metric topology defined by d1(a, b) = |xa − xb|+ |ya − yb|.

12. Show that the fixed point property is a topological property, i.e. if X has the fixed point
property and if Y is homeomorphic to X, then Y has the fixed point property.

13. Consider the unit-circle S1 = {x = (x1, x2) ∈ R2 | x2
1 + x2

2 = 1} as a subspace of R2 with
the usual topology.

(a) Define A = {x ∈ S1 | x1 > 0}. Is A an open set in S1? Is A a open set in R2?

(b) Define B = {x ∈ S1 | x1 ≥ 0}. Is B a closed set in S1? Is B a closed set in R2?

14. Let (A, τA) be a subspace of (X, τX), and let (Y, τY ) be a Hausdorff space. Let f : A −! Y
be a continuous map. Show that there exists at most one continuous map g : Cl(A) −! Y
such that g|A = f . Show that g exists if for any a ∈ Cl(A) \A, lim

x∈A,x!a
f(x) exists.

4.2.4 Topological Product - Product Topology
Let (X1, τ1) and (X2, τ2) be two topological spaces.
We would like to define a “suitable” topology τ on the product X1 ×X2 from the topologies τ1
and τ2. The product X1 ×X2, as a set, is defined by two canonical surjections p1 and p2 such
that

X1 X1 ×X2
p1oo p2 // X2

where p1(x1, x2) = x1 and p2(x1, x2) = x2 for (x1, x2) ∈ X1 ×X2.
The topology τ has to make p1 and p2 continuous. Notice that the discrete topology on X1×X2

makes p1 and p2 continuous, but it is not defined from the topologies τ1 and τ2.
The “suitable” topology is the coarsest (i.e. weakest or smallest) one making p1 and p2 continuous.
τ is the smallest set with this property.

Definition 4.2.14. The topology τ on X1 ×X2 is called the product topology of τ1 and τ2
making p1 and p2 continuous.

τ =

{⋃
i

O1i
×O2i

| O1i
∈ τ1,O2i

∈ τ2

}
.

Exercice 4.2.15. • Show that τ as defined above is a topology and p1 and p2 are continuous.

• Show that if τ ′ is a topology on X1 ×X2 and p1 and p2 are continuous then τ ⊆ τ ′.

More generally, we define the product topology on X1 × · · · ×Xn where (Xi, τi)i=1,...,n are some
topological spaces.

Exercice 4.2.16. Let R with the standard topology. Then R2 equipped with the product topology
is homeomorphic to the Euclidean space.

Example 4.2.17. Consider a robot arm made of two bars connected by a revolving joint, the
longer bar can rotate around its fixed endpoint, the shorter bar can freely rotate around the joint.
The configuration space is the space of all states of the robot arm. It is encoded by the angles
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between each bar with the horizontal axis, i.e. {(α, β) | α, β ∈ [0, 2π]} = S1 × S1. It is the torus.
The topology on the torus is the product topology. The topology on the torus gives informations
on the stability of the robot.

Proposition 4.2.18. Let (X1×X2, τ) be the product space of the two topological spaces (X1, τ1)
and (X2, τ2). Let (Y, τY ) be a topological space.

1. Let f : Y −! X1 ×X2. Then f is continuous iff each coordinate map p1 ◦ f and p2 ◦ f is
continuous.

2. Universal Mapping Property: Let fi : Y −! Xi, i = 1, 2 be two continuous maps. Then
there exists a unique continuous map h : Y −! X1 ×X2 such that pi ◦ h = fi, i = 1, 2.

Proof:

1. =⇒) pi is continuous, f is continuous, so the composition pi ◦ f is continuous.

Y

f

��

p1◦f

xx

p2◦f

&&
X1 X1 ×X2p1
oo

p2
// X2

Y

h

��

f1

xx

f2

&&
X1 X1 ×X2p1
oo

p2
// X2

⇐=) Denote f1 = p1 ◦ f and f2 = p2 ◦ f . Suppose f1 and f2 continuous.
It is enough to consider the open sets O = O1 ×O2 in X1 ×X2 where O1 is an open set of
X1 and O2 is an open set of X2.
Then O1×O2 = (X1×O2)∩ (O1×X2) and f−1(O1×O2) = f−1(X1×O2)∩f−1(O1×X2).
We have p−1

2 (O2) = X1×O2 and f−1(X1×O2) = f−1(p−1
2 (O2) = f−1

2 (O2) ∈ τZ . Similarly,
we have f−1(O1 ×X2) = f−1

1 (O1) ∈ τZ . Hence f is continuous.

2. We have h(z) = (x1, x2), p1(x1, x2) = p1(h(z)) = f1(z) and p1(x1, x2) = x1, and similarly
p2(x1, x2) = f2(z). So h(z) = (f1(z), f2(z)) and h is unique.
h is continuous because f1 and f2 are continuous.

�

Remark 4.2.19. The map h stays continuous if the topology on X1 × X2 is replaced by a
coarser topology. But if it is replaced by a finer topology, h may be not continuous and the
universal mapping property is not satisfied. Hence, the coarsest topology is the “suitable”.

We define the product of n topological spaces (X1, τ1), . . . , (Xn, τn) as
n∏
i=1

(Xi, τ) where

τ =

{⋃
i

O1i × · · · ×Oni | Oji ∈ τj , j = 1, . . . , n

}

The product of countable topological spaces (Xn, τn), n ∈ N, is defined as

(∏
n∈N

Xn, τ

)
where

τ =

{⋃
i

O1i × · · · ×Oni ×
∞∏

i=n+1

Xi | Oji ∈ τj , j = 1, . . . , n

}
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Retracts & Products

Proposition 4.2.20. If A is a retract of X and B is a retract of Y , then A×B is a retract of
X × Y .

Remark 4.2.21. The space X×Y has the product topology and A×B ⊂ X×Y has the induced
topology. But A ⊂ X and B ⊂ Y have the induced topologies and the space A×B has the product
topology. We have to show that these two topologies are equal. (exercise)

Proof: We have to show that there exists a continuous map r : X × Y −! A×B such that

A×B ι //

IdA×B

''
X × Y r // X × Y

For any space Z and any continuous maps fX and fY , there exists a unique continuous map h
such that the following diagram is commutative, where pX and pY are the canonical projection:

X X × Y
pXoo pY // Y

Z

h

OO

fX

ee

fY

99

and similarly, for any space Z and any continuous maps fA and fB , there exists a unique
continuous map k such that the following diagram is commutative, where pA and pB are the
canonical projection:

A A×B
pAoo pB // B

Z

k

OO

fA

ee

fB

99

So these two diagrams altogether give the commutative diagram where we replace Z by A × B
in the first one and by X × Y in the second one, with fA = rA ◦ pX , fB = rB ◦ pY , fX = ιA ◦ pA
and fY = ιB ◦ pB , as follows

A A×B
pAoo pB // B

X

rA

OO

X × Y

r

OO

fA

ee

fB

99

pX
oo

pY
// Y

rB

OO

A

IdA

??

ιA

OO

A×B
fX

ee

pA
oo

ι

OO

fY

99

pB
// B

ιB

OO IdB

__

We have r(x, y) = (rA(x), rB(y)) and ι(a, b) = (ιA(a), ιB(b)). It remains to verify that
r ◦ ι = IdA×B which is straightforward. �

Properties of the Product

Proposition 4.2.22. Let (X1, τ1) and (X2, τ2) be Hausdorff spaces. Then the product space
(X1 ×X2, τ) is Hausdorff.

70



4.2. INITIAL TOPOLOGY

Proof: Let (x1, x2) 6= (y1, y2) ∈ X1 × X2, then x1 6= y1 or x2 6= y2. Suppose x1 6= y1. X1 is
Hausdorff so there exists open disjoint neighbourhoods Ox1

of x1 and Oy1 of y1. Then Ox1
×X2

and Oy1 × X2 are open disjoint neighbourhoods of (x1, x2) and (y1, y2), then (X1 × X2, τ) is
Hausdorff. �

Proposition 4.2.23. Let (X1, τ1) and (X2, τ2) be topological spaces and let A1 ⊂ X1, A2 ⊂ X2.
Then

1. Int(A1 ×A2) = Int(A1)× Int(A1)

2. Cl(A1 ×A2) = Cl(A1)× Cl(A1)

Proof:

⇐=) Int(A1)× Int(A1) ⊂ Int(A1 ×A2)
Let a1 ∈ Int(A1) and a2 ∈ Int(A2). Then there exists open neighbourhoods O1 ⊂ A1 of a1

and O2 ⊂ A2 of a2, so O1×O2 ⊂ Int(A1×A2) is an open neighbourhood of (a1, a2), hence
(a1, a2) ∈ Int(A1 ×A2).

=⇒) Int(A1 ×A2) ⊂ Int(A1)× Int(A1)
Let (a1, a2) ∈ Int(A1 × A2), then there exists an open neighbourhood O ⊂ A1 × A2 of
(a1, a2). By definition of open set in a product, O =

⋃
iO1i × O2i where O1i ∈ τ1, O2i ∈

τ2 and O1i ⊂ A1 (resp.O2i ⊂ A2) is an open neighbourhood of a1 (resp. a2), hence
a1 ∈ Int(A1) and a2 ∈ Int(A2). Therefore Int(A1 ×A2) ⊂ Int(A1)× Int(A1).

The case of closures is similar (exercise). �

Proposition 4.2.24. Let (X1×X2, τ) be the product space of the two topological spaces (X1, τ1)
and (X2, τ2). Then p1 (resp. p2) sends open sets onto open sets.

Proof: Let O be an open set of X1×X2, so that O is a union of products of open sets. For any
x1 ∈ p1(O), take x2 ∈ X2 such that (x1, x2) ∈ O. Hence, there exists O1 ∈ τ1, O2 ∈ τ2 such that
(x1, x2) ∈ O1×O2 ⊂ O. Then O1 ⊂ p1(O) is an open neighbourhood of x1 in O1, so O1 ∈ τ1. �

However it is not true that p1 (resp. p2) sends closed sets onto closed sets.

Example 4.2.25. Let X = Y = R with the standard topology and let X×Y = R2 be the product
space. Let A = {(x, y) ∈ R2

∣∣ xy = 1}. The hyperbola A is closed and p1(A) = p2(A) = R \{0}
which is not closed. (Hint: Let Ac = {(x, y) ∈ R2

∣∣ xy 6= 1}. We have to show that Ac is open.
Let (x, y) ∈ Ac and let L be a line through (x, y) which meets A in two points. For example
choose L = {(x+ t, y+ t)

∣∣ t ∈ R}. Then find an open rectangle or an open quadrant containing
(x, y) and contained in Ac.)

Remark 4.2.26. The duality does not work. So, this example is important. It shows that the
duality has to be considered with caution.

4.2.5 Initial Topology

The induced topology and the product topology are some particular cases of a more general
setting.
Let X be a set, (Yi, τi)i∈I a family of topological spaces and let fi : X −! Yi be a family of
maps.
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Definition 4.2.27. The initial topology τ on X w.r.t. the family (fi)i∈I is the coarsest
topology which makes all the maps fi continuous.

Then τ is the topology generated by
{
f−1
i (Oi) | Oi ∈ τi, i ∈ I

}
.

If Bi is a basis of open sets of Yi, for any i ∈ I, then the set of all finite intersections of elements
of
{
f−1
i (Oi) | Oi ∈ Bi, i ∈ I

}
is a basis of τ .

Example 4.2.28. The case of induced or subspace topology consists to consider X as a subset
of the topological space Y , i.e. the family (Yi)i∈I is reduced to one element, Y . It is the initial
topology w.r.t. the inclusion ι.
The product topology is the initial topology w.r.t. the family of projections (pj)j∈I where
pj :

∏
i

Xi −! Xj such that pj((xi)) = xj.

The initial topology has the following property

Proposition 4.2.29. Let τ be the initial topology on X w.r.t. the family (fi)i∈I where
fi : X −! Yi. For any topological space (Z, τZ) and any map g : Z −! X, we have g is
continuous iff fi ◦ g is continuous for any i ∈ I.

Proof: If g is continuous, then fi ◦ g is continuous since each fi is continuous.
Conversely, {f−1

i (Oi) | Oi ∈ τi, i ∈ I} is a subbase of (X, τ).
Each g−1(f−1

i (Oi)) = (fi ◦ g)−1(Oi) ∈ τZ . Hence g is continuous. �

Remark 4.2.30. The property given in the proposition is not the universal mapping property.
However, some authors call it universal.

4.2.6 Exercises
1. Let (X1, τ1), (X2, τ2) be two topological spaces with the basis Σ1,Σ2. Then, show that

Σ = Σ1 × Σ2 is a basis for the product topology on X1 ×X2.

2. Show that the topological subspace can be characterized by a universal property.

3. Let (X, dX) and (Y, dY ) be two metric spaces. There are several ways of making the product
X × Y a metric space:

d1 ((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2)

d2 ((x1, y1), (x2, y2)) = sup (dX(x1, x2), dY (y1, y2))

Show that (X × Y, d1) and (X × Y, d2) are metric spaces.
Show that the sequence

(
(xn, yn)

)
converges to (x0, y0) iff we have coordinate convergences.

4. Let (X, d) be a metric space. Then the map d : X ×X −! R is continuous.

5. The standard topology on Rn is metric, either d1, d2 or d∞. Show that this metric topology
is the n times product of the standard topology on R.

6. Prove that R2 \ {0} as subspace of the Euclidean plane, is homeomorphic to S1×]0,+∞[
with the product topology where S1 is the subspace of the Euclidean plane and ]0,+∞[ is
the subspace of R with the standard topology.

7. Let f : X −! Y be a homeomorphism from the topological space (X, τX) onto the topo-
logical space (Y, τY ). Let A ⊂ X be a subset of X.
Show that the map f|X\A, restriction of f to the subspace X \A defines a homeomorphism
g : X \A −! Y \ f(A).
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8. Show that (R, τs) where τs is the standard topology, and (R>0, τ) where τ is the induced
topology of τs, are two homeomorphic topological spaces and give a homeomorphism.

9. Show that (R2 \ {(0, 0)}, τ1), where τ1 is the induced topology of the Euclidean topology,
and (S1 × R, τ2), where τ2 is the product topology of the subspace S1 ⊂ R2 with τs, are
homeomorphic.

10. Let X,Y, Z and T be the four following subspaces of R2:

X = {(x, y) ∈ R2 | x ≥ y ≥ 0}
Y = {(x, y) ∈ R2 | y ∈ [0, 1[}
Z = {(x, y) ∈ R2 | x ∈ [0,+∞[, y ∈ [0, π/4]}
T = {(x, y) ∈ R2 | y ≥ 0}

(a) Draw the pictures of X,Y, Z and T .

(b) Find a homeomorphism f : X −! Z.

(c) Find a homeomorphism g : Z −! T .

(d) Find a homeomorphism h : T −! Y .

(e) Show that X ∼= Y .

11. Let Dn = {x ∈ Rn| d(O, x) = ‖x‖ ≤ 1} be the closed unit ball of Rn where O = (0, . . . , 0)
and ‖x‖ =

√
x2

1 + · · ·+ x2
n. Show that the following map f is a homeomorphism:

f : D1 × D2 −−−! D3

(x, y) 7−−−!


‖y‖√

‖x‖2 + ‖y‖2
(x, y) if 0 < ‖x‖ < ‖y‖

‖x‖√
‖x‖2 + ‖y‖2

(x, y) if 0 < ‖y‖ < ‖x‖

12. LetP1(R) be the projective line with the Zariski topology. Let s : P1(R)×P1(R) −! P3(R)
be the map defined by s((a0 : a1), (b0 : b1)) = (a0b0 : a0b1 : a1b0 : a1b1).

(a) Show that the image of s is a closed set w.r.t. Zariski topology.

(b) Show that P1(R) ×P1(R) w.r.t. Zariski topology is not the product in P3(R) w.r.t.
Zariski topologies.

13. Let C be the Cantor set. Let {0, 1} be the set equipped with the discrete topology and let
{0, 1}N be the product space. Show that the map

f : {0, 1}N −−−! C

(xi)i∈N 7−−−!
∑
i≥0

2xi
3i+1

is a homeomorphism. Show that CN and C are homeomorphic.

14. Show that the Zariski topology on the product X ×Y is not the product of the topological
spaces X and Y equipped with the Zariski topology.
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15. Let (X, τX) and (Y, τY ) be two topological spaces and A ⊆ X,B ⊆ Y . The product A×B
can be viewed as a subspace of the product space X × Y and as the product of the two
subspaces (A, τXA) and (B, τYB ).
Do we have the same topology on A×B?

16. Let {Xα}α∈A be a family of topological spaces. Consider the family of the sets of the form∏
α∈A

Oα where Oα is an open set in Xα for all α ∈ A.

Show that it is a basis for a topology on the product space
∏
α∈A

Xα. This topology is called

the box topology.
Show that the box topology is, in general, finer than the product topology.
If the set A is finite, then the two topologies are identical.
There are many important theorems about finite products that also hold for arbitrary
products if we use product topology, but not if we use bow topology. So, the box topology
is not so important.

4.3 Final Topology

4.3.1 Topological Quotient - Quotient Topology
Let X be a set and let R be an equivalence relation on X. The quotient set denoted X/R is
the set of all the equivalence classes modulo R. The equivalence classes define a partition of X.
Then there is a canonical surjection:

p : X −−−! X/R
x 7−−−! p(x) = {y ∈ X

∣∣ yRx} := [x]

Let τ be a topology on X. We have to define a “suitable” topology on the quotient set X/R which
makes the map p continuous. For example, the trivial topology on X/R makes p continuous and
this topology does not depend on τ but there exists many others.
We will choose the finest (i.e. strongest or largest) topology τR on X/R which makes the map
p continuous.

Definition 4.3.1. Let (X, τ) be a topological space, let X/R be the quotient set and let define

τR =
{
O ⊂ X/R

∣∣ p−1(O) ∈ τ
}

.

Then τR is called the quotient topology of the topology τ mod R.

Notice that τR is the finest (i.e. strongest or largest) topology making p continuous.
For any coarser topology τ than τR, the map p is continuous, so why do we choose this topology
τR?
The quotient topology satisfies the following universal mapping property , i.e. for any (Z, τZ)
and any continuous map f : X −! Z such that xRx′ =⇒ f(x) = f(x′), there exists a unique
continuous map h : X/R −! Z such that f = h ◦ p.
For a coarser topology than τR on the quotient X/R, the map h may be not continuous, so the
universal mapping property may be not satisfied.

Example 4.3.2. Let (Z, τZ) = (X/∼, τR), then f = p and h = Id. Let τ $ τR, and let
O ∈ τR \ τ , then h−1(O) is not open, so h is not continuous.
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Surjections

More generally, let f : X −! B be a surjection, where (X, τ) is a topological space and B a set.
Let Rf be the equivalence relation on X where xRfx′ if f(x) = f(x′).
Let denote [x] = {x′ ∈ X | f(x′) = f(x)}. Then

⋃
x∈X

[x] = X and [x] ∩ [x′] = ∅ if f(x) 6= f(x′),

[x] ∩ [x′] = [x] = [x′] if f(x) = f(x′). Hence, we get a partition of X. We obtain the following
commutative diagram:

X
f //

p

""

B

X/Rf

g

'

<<

where p is the canonical surjection, and g([x]) = f(x), so that g is a bijection.
Let τRf be the quotient topology on X/Rf .

Definition 4.3.3. The identification topology τB on B is the topology making the bijection
g : X/Rf

'
−! B an homeomorphism g : (X/Rf , τRf )

∼=−! (B, τB).

Recall that, given a bijection from one topological space onto a set, there is a topology on the
set such that the bijection is a homeomorphism.

Definition 4.3.4. Let (X, τX) be a topological space. A surjective continuous map f : X −! B
is called a quotient map if the topology on B is the identification topology.

It means that a subset O of B is open iff the set f−1(O) is open in X.
An equivalent definition of quotient map is given by replacing open by closed, i.e. a subset C of
B is closed iff the set f−1(C) is closed in X.
Notice that the continuity follows from the definition.
A continuous surjection that is either open or closed is a quotient map. But there exist quotient
maps that are neither open nor closed.
Notice that the quotient maps and the embeddings are dual notions.
It is possible to extend the construction of quotient map to any map f : X −! Y . If f is
continuous, f can be factored as f = g ◦πf : X −! X/Rf −! Y where πf and g are continuous,
πf surjective and g injective.

Remark 4.3.5. We focused on the duality between initial and final topologies. However, duality
has its own limits. For example, a subspace of Hausdorff space is Hausdorff as well any product
of Hausdorff spaces is Hausdorff. But the quotient space of a Hausdorff space is not necessarily
Hausdorff. Let us give an example. Let X = [0, 1] and τ = {{0}, (0, 1), {1}} which is a partition
of X, is not Hausdorff. So, duality must be used with care.

Remark 4.3.6. Notice that there is a well known similar process for group homomorphisms;
more precisely, the Fundamental Homomorphism Theorem is as follows: Let f : G −! H be a
homomorphism of groups. Then f(G) is a group and there is a canonical isomorphism of f(G)
with G/ker(f). In other words, f can be factored as f = g ◦ πf : G −! G/ker(f) −! H where
ker(f) and g are group homomorphisms, πf surjective and g injective.

Proposition 4.3.7. Let (X, τX) be a topological space and let (X/R, τR) be the quotient topo-
logical space. Let (Z, τZ) be a topological space and let g : X/R −! Z be a map. Then g is
continuous iff g ◦ π is continuous.

Proof: (exercise) �
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4.3.2 Sections
Let X and Y be two topological spaces.

Definition 4.3.8. The continuous map s : Y −! X is said to be a section if there exists
f : X −! Y such that f ◦ s = IdY , i.e. s is a right inverse of f .

If f has a section, then f is surjective and s is injective. Moreover, s is a right inverse of f , so,
f is a left inverse of s and we can say that s is a section of f iff f is a retraction of s.

Proposition 4.3.9. Let f : X −! Y be a surjection and Z a topological space. There is a
section s : Y −! X iff for every continuous map g : Z −! Y , there is a continuous map
h : Z −! X such that f ◦ h = g.

Proof: (exercise)

Y

IdY

%%s // X
f // Y

Z

h

OO

g

cc

g

;;

�
In particular, let Z = X/Rf . We have the two following commutative diagrams

Y

IdY

''s // X

p

��

f // Y

X/Rf

g

ee

g

99 X/Rf

h

��

g

yy

g

%%
Y

IdY

77
s // X

f // Y

where the map g is a homeomorphism such that h = s ◦ g and p = g−1 ◦ f so

p ◦ h = (g−1 ◦ f) ◦ (s ◦ g) = g−1 ◦ (f ◦ s) ◦ g = g−1 ◦ IdY ◦ g = IdX/Rf

These two diagrams altogether show that the map h is a section of the map p,

X/Rf
h //

IdX/Rf

((
X

p // X/Rf

4.3.3 Topology Sum - Coproduct Topology
Let (X1, τ1) and (X2, τ2) be two topological spaces. We defined the disjoint sum X1

∐
X2 of

the two sets X1 and X2. There are two canonical maps ι1 : X1 −! X1

∐
X2, x1 7! (1, x1) and

ι2 : X2 −! X1

∐
X2, x2 7! (2, x2).

X1 X1

∐
X2

ι1oo ι2 // X2

We have to define a topology τ on X1

∐
X2 which makes the maps ι1 and ι2 continuous. Notice

that the trivial topology on X1

∐
X2 makes the maps ι1 and ι2 continuous. The “suitable”

topology is the finest (i.e. strongest or largest) one making the maps ι1 and ι2 continuous.
Recall that we identified X1, (resp. X2) with the subset ({1} ×X1), (resp. ({2} ×X2)).
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Definition 4.3.10. (X1

∐
X2, τ) is called the sum or coproduct of the topological spaces

(X1, τ1) and (X2, τ2) if

τ =
{
O ⊂ X1

∐
X2 | O ∩X1 ∈ τ1 and O ∩X2 ∈ τ2

}
.

Remark 4.3.11. This definition extends to any family (Xi)i∈I of topological spaces to define
the sum

∐
i∈I

Xi =
⋃
i∈I
{i} ×Xi.

Proposition 4.3.12. Let X1

∐
X2 be the sum of the two topological spaces (X1, τ1) and (X2, τ2).

Let (Z, τZ) be a topological space.

1. Let f : X1

∐
X2 −! Y . Then f is continuous iff each map f ◦ ι1 and f ◦ ι2 is continuous.

2. Universal Mapping Property: Let f1 : X1

∐
X2 −! Y, f2 : X1

∐
X2 −! Y be two

continuous maps. Then there exists a unique continuous map h : X1

∐
X2 −! Y such that

h ◦ ι1 = f1 and h ◦ ι2 = f2.

Proof: (exercise) �

For a coarser topology than the topology τ on the sum X1

∐
X2, the map h may be not contin-

uous, so the universal mapping property should not satisfied.

4.3.4 Final Topology

The sum topology, the coproduct topology are some particular cases of a more general setting.
Let X be a set, (Yi, τi)i∈I a family of topological spaces and let fi : Yi −! X be family of maps.

Definition 4.3.13. The final topology τ on X defined by the family (fi)iinI is the finest
topology which makes all the maps fi continuous.

Then τ =
{
O | f−1

i (O) ∈ τi, i ∈ I
}
.

The case of sum topology consists to consider X as
∐
i∈I

Xi and fi as the canonical maps ιi.

Remark 4.3.14. Notice the duality between initial and final topologies.

The final topology has the following property

Proposition 4.3.15. Let τ be the final topology on X w.r.t. the family (fi)i∈I where
fi : Yi −! X. For any topological space (Z, τZ) and any map g : X −! Z, we have g is
continuous iff g ◦ fi is continuous for any i ∈ I.

Proof: If g is continuous, then g ◦ fi is continuous since each fi is continuous.
Conversely, let O ∈ τZ and g−1(O) = U ⊂ X. The maps fi are continuous, so f−1

i (U) =
f−1
i (g−1(O)) = (g ◦ fi)−1(O) ∈ τi for any i ∈ I. It follows that U ∈ τ and g is continuous. �

Remark 4.3.16. The property given in the proposition is not the universal mapping property.
However, some authors call it universal.
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4.3.5 Initial & Final Topologies

Subspaces and Product of Spaces

Let (X, τX) and (Y, τY ) be two topological spaces and A ⊂ X,B ⊂ Y two subsets. Consider the
product A × B of the two sets. Then A × B is assigned with the product topology of the two
subspaces (A, τAX ) and (B, τBY ). But A × B is also assigned with the induced topology of the
product topology on X × Y .
The question is: are these two topologies on A×B the same?
Notice that the induced topology and the product topology are two initial topologies.

Quotient Spaces and Sum of Spaces

Let (X, τX) and (Y, τY ) be two topological spaces and RX (resp. RY ) be an equivalence relation
on X (resp. Y ). Consider the sum (X

∐
Y, τ) and the equivalence relation R on the sum given

by the two equivalence relations on X and Y . Another way to see it, is to consider the partitions
of X and Y defined by the equivalence relations on X and Y and the partition of the disjoint
union. The two sets (X

∐
Y )/R and (X/RX)

∐
(Y/RY ) are the same up to a bijection.

The question is: Are the quotient topology on the sum X
∐
Y and the topology sum of the

quotient spaces (X/RX)
∐

(Y/RY ), the same?
Notice that the quotient topology and the sum topology are two final topologies.

Quotient Spaces and Product of Spaces

Let (X, τX) and (Y, τY ) be two topological spaces and RX (resp. RY ) be an equivalence relation
on X (resp. Y ), i.e. there exist a partition of X and a partition of Y . Then we get a partition
of the product X ×Y , i.e. an equivalence relation R on X ×Y . Are the two sets X/RX ×Y/Ry
and X × Y/R the same? Moreover, X/RX × Y/Ry is assigned with the product of the quotient
topologies andX×Y/R with the quotient topology of the product space. Are these two topologies
same?
Notice that the product topology is initial topology and quotient topology is final topology.

Subspaces and Sum of Spaces

Let (X, τX) and (Y, τY ) be two topological spaces and A ⊂ X,B ⊂ Y two subsets. Consider
the sum A

∐
B of the two sets. Then A

∐
B is assigned with the sum topology of the two

subspaces (A, τAX ) and (B, τB?Y ). But A
∐
B is also assigned with the induced topology of the

sum topology of X
∐
Y . Are the two topologies the same?

Notice that the induced topology is initial topology and sum topology is final topology.

Subspaces and Quotient Spaces

Let (X, τX) be a topological space and A ⊂ X. Let p : X −! X/ ∼ be a quotient map. Is the
restriction p|A a quotient map?
Notice that the induced topology is initial topology and quotient topology is final topology.

Product and Sums of Spaces

Let (X1, τX1
), (X2, τX2

), (Y1, τY1
), (Y2, τY2

) be four topological spaces. Compare the topological
spaces (X1

∐
X2)× (Y1

∐
Y2) and (X1 ×X2)

∐
(Y1 × Y2).
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4.3.6 Exercises
1. Define the topology sum and the topology quotient as final topologies.

2. Answer to the two last questions in the previous subsection.

3. Let s1 : X1 −! Y1 and s2 : X2 −! Y2 be two sections, then show that there is a section
X1

∐
X2 −! Y1

∐
Y2 associated to si.

4. Consider the following relation R on R2

(x, y)R(x′, y′) if xy = x′y′

Show that R is an equivalence relation and R2/R is homeomorphic to R where the topolo-
gies on R2 and R are the Euclidean and standard ones.

5. Show that the following map is continuous

f : [0, 1]× [0, 1] −−−! B

(s, t) 7−−−! f(s, t) = se2iπt

where B = {(x, y) ∈ R2 | x2 + y2 ≤ 1} and [0, 1] × [0, 1] are subspaces of R2 with the
Euclidean topology.
Determine an equivalence relation on [0, 1] × [0, 1] such that the quotient space
[0, 1]× [0, 1]/ ∼ is homeomorphic to B.
Determine the open sets O in B such that f−1(O) is (a, b)× (c, d), for 0 ≤ a < b ≤ 1 and
0 ≤ c < d ≤ 1.

6. Let (X, τX) and (Y, τY ) be two topological spaces. Show that the map pX : X×Y −! X is
a quotient map. Are the two topologies τX and the quotient topology on X are the same?

7. Consider the following map

f : [0, 1]× [0, 1] −−−! R2

(s, t) 7−−−! (−1 + 2s, 2s(2t− 1)) for 0 ≤ s ≤ 1

2

(s, t) 7−−−! (−1 + 2s, 2(1− s)(2t− 1)) for
1

2
≤ s ≤ 1

(a) Show that f is a continuous map.
(b) Determine f ([0, 1]× [0, 1]).
(c) Show that f ([0, 1]× [0, 1]) is homeomorphic to the quotient space [0, 1]× [0, 1]/ ∼ and

define the equivalence relation.
(d) Determine the open sets of f([0, 1]× [0, 1]).

8. Given two topological spaces (X, τX), (Y, τY ) and RX ,RY some equivalence relations on
X and Y respectively.

(a) Let R be the equivalence relation on the sum X
∐
Y generated by (0, x)R(0, x′) if

xRXx′ and (1, y)R(1, y′) if yRY y′.
Let (X/RX , τRX ) and (Y/RY , τRY ) be the two quotient spaces. Compare the two
topological spaces (X/RX

∐
Y/RY , τ) and (X

∐
Y )/R, τ ′) where τ is the sum of

the quotient topologies and τ ′ is quotient topology of the sum topology.
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(b) Let ∼ be the equivalence relation on the product X × Y defined as follows: (x, y) ∼
(x′, y′) if xRx′ and yRy′.
Show that the map X × Y −! X/RX × Y/RY : (x, y) 7−! (pX(x), pY (y)) induces a
continuous bijection ϕ : (X × Y )/∼−! (X/RX)× (Y/RY ).
Show that if the canonical surjections pX and pY are open, then the map ϕ is a
homeomorphism.

9. Let U = {z ∈ C | |z| = 1} as a subspace of R2.
Show that U is Hausdorff (Find two disjoint neighbourhoods of two distinct points).

10. Let X
∐
Y be the topological sum of the two topological spaces (X, τX) and (Y, τY ).

Show that, given a topological space (Z, τZ) and two continuous maps fX : X −! Z,
fY : Y −! Z, there exists a unique continuous map h : Z −! X

∐
Y such that h◦iX = fX

and h ◦ iY = fY .

11. Show that if the quotient topology is Hausdorff, then the equivalence classes are closed.

12. For any topological spaces X and Y , and continuous functions f : X −! R, g : Y −! R,
prove that the function h : X × Y −! R such that h((x, y)) = f(x).g(y) is continuous.

13. Consider the equivalence relation on R: x ∼ y if x−y ∈ Q. Show the the quotient topology
on R/∼ is the trivial topology. (Hint: Show that p−1(A), where p : R −! R/∼, is dense.)

4.4 Applications

4.4.1 Contraction

Let (X, τ) be a topological space and let A ⊂ X. Then we get the partition of X as the subsets
A and all the one-point sets {x} where x 6∈ A. Denote (X/A, τA) the quotient space called the
contraction of A in X. For example,

1. Let X = [0, 1] be the interval equipped with the induced topology of the standard topology
on R. Let A = {0, 1}. Then X/A ∼= S1 (homeomorphism) (exercise).

2. Let Rn be the Euclidean space where ‖ (x1, . . . , xn) ‖=
√
x2

1 + · · ·+ x2
n.

Let Dn = {x ∈ Rn
∣∣ ‖ x ‖≤ 1} and Sn−1 = {x ∈ Rn

∣∣ ‖ x ‖= 1} as subspaces of the
Euclidean space. Then Dn/Sn−1 ∼= Sn (homeomorphism).
Proof:: Let N = (0, . . . , 0, 1) ∈ Sn−1 be the north pole. Dn = Bn ∪ Sn−1 where Bn =
{x ∈ Rn

∣∣ ‖x‖< 1} is the open unit ball and Bn ∩ Sn−1 = ∅.
Define the map

f : Sn \ {N} −−−! Rn

(x1, . . . , xn+1) 7−−−!
(

x1

1− xn+1
, · · · , xn

1− xn+1

)

For n = 1, we get (x1, x2) 7−!
x1

1− x2
, so pi ◦ f(x1, . . . , xn) =

xi
1− xn

where pi is the

projection on the ith factor.
This map f is called the stereographic projection.
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Define the map

g : Rn −−−! Sn \ {N}

(x1, . . . , xn) 7−−−!
(

2x1

1+ ‖ x ‖2
, · · · , 2xn

1+ ‖ x ‖2
,
‖ x ‖2 −1

‖ x ‖2 +1

)
where ‖ x ‖2= x2

1 + · · ·+ x2
n.

The two maps f and g are continuous and inverses of each other, i.e. Sn \ {N} and Rn are
homeomorphic.
We show it for n = 2.

g(x1, x2) =

(
2x1

1+ ‖ x ‖2
,

2x2

1+ ‖ x ‖2
,
‖ x ‖2 −1

‖ x ‖2 +1

)
.

‖g(x1, x2)‖2=
(2x1)2 + (2x2)2 + (x2

1 + x2
2 − 1)2

(x2
1 + x2

2 + 1)2

=
4x2

1 + 4x2
2 + x4

1 + x4
2 + 1 + 2x2

1x
2
2 − 2x2

1 − 2x2
2

x4
1 + x4

2 + 1 + 2x2
1x

2
2 + 2x2

1 + 2x2
2

=1

so g is a map from R2 to S2.
For all (x1, x2) we have x2

1 + x2
2 − 1 < x2

1 + x2
2 + 1, so g(x1, x2) 6= N and g is a map from

R2 to S2 \ {N}.
If g(x1, x2) = (x, y, z), then x =

2x1

x2
1 + x2

2 + 1
and

1− z =
x2

1 + x2
2 − 1

x2
1 + x2

2 + 1
=

(x2
1 + x2

2 + 1)− (x2
1 + x2

2 − 1)

x2
1 + x2

2 + 1
=

2

x2
1 + x2

2 + 1

so
x

1− z
= x1 and similarly

y

1− z
= x2. Hence f(g(x1, x2)) = (x1, x2).

Let us show that g(f(x, y, z)) = (x, y, z) where (x, y, z) ∈ S2 and f(x, y, z) = (x1, x2).
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We have x2 + y2 + z2 = 1 and x1 =
x

1− z
, x2 =

y

1− z
. So,

x2
1 + x2

2 + 1 =
x2 + y2 + (1− z)2

(1− z)2
=
x2 + y2 + z2 + 1− 2z

(1− z)2
=

2− 2z

(1− z)2
=

2

1− z

Thus
2x1

x2
1 + x2

2 + 1
=

2x

1− z
/

2

1− z
= x

Similarly, we have
2x2

x2
1 + x2

2 + 1
= y. We also have x2 + y2 = 1− z2, so

x2
1 + x2

2 − 1 =
x2 + y2 − (1− z)2

(1− z)2

=
x2 + y2 − z2 − 1 + 2z

(1− z)2

=
1− z2 − z2 − 1 + 2z

(1− z)2

=
2z(1− z)

1− z
=

2z

1− z

We see that
x2

1 + x2
2 − 1

x2
1 + x2

2 + 1
= z and it follows g(f(x, y, z)) = (x, y, z).

Define the map

h : Bn −−−! Rn

(x1, . . . , xn) 7−−−!
(

x1

1− ‖ x ‖
, · · · , xn

1− ‖ x ‖

)
The map h is a homeomorphism. (exercise)
We have

Bn
h
−! Rn g

−! Sn \ {N} and Sn−1 −! {N}
So, we can define the map

k : Dn = Bn ∪ Sn−1 −−−! Sn

(x1, . . . , xn) 7−−−! g(h(x1, . . . , xn)) if ‖ x ‖< 1 i.e. x ∈ Bn

(x1, . . . , xn) 7−−−! N if ‖ x ‖= 1 i.e. x ∈ Sn−1

The map k is a quotient map which implies that Dn/Sn−1 ∼= Sn and Sn is homeomorphic
to the contraction of Sn−1 in the space Dn. �

4.4.2 Gluing
Let (A, τA), (B, τB) be two homeomorphic topological subspaces of the topological space (X, τ)
and let h : A −! B be a homeomorphism. Define the partition of X given by the one-point sets
{x} where x 6∈ A ∪ B and the sets {x, h(x)} where x ∈ A. Denote Rf or RAB the equivalence
relation defined by this partition. Then the quotient space X/Rf is obtained by identifying
(or gluing) the sets A and B via the homeomorphism h.

Example 4.4.1. Let I = [0, 1] and I2 the subspaces of R and R2 equipped with the Euclidean
topologies.
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1. Circle
Consider the following commutative diagram:

I
f //

p
$$

S1

I/Rf

g

∼=

::

where f(t) = e2iπt, t ∈ I and Rf is the equivalence relation such that 0Rf1 and the other
equivalence classes are the one-point sets.
This construction consists to identify the points 0 and 1 of I into one point to obtain the
circle.
Given I with the induced topology as subspace of R with standard topology, we define the
continuous map f onto the circle (subspace of R2 with the Euclidean topology). Then we
get the homeomorphism g. (exercise: give explicitely g and prove it is a homeomorphism).
Notice that the quotient space represents the “abstract” topological space and the homeo-
morphism gives a “concrete” space if it is suitably defined. These two spaces are defined as
a quotient space for one and as a subspace for the other one.
The “dual” construction consists to delete one point of the circle. Let f :]0, 1[−! S1 be the
injection defined by f(t) = e2iπ(t−t0) and denote ∗ = e2iπt0 . Then

]0, 1[
f //

g

∼=

$$

S1

S1 \ {∗}
- 

ι

;;

Given the circle with the induced topology as subspace of R2 with the Euclidean topology,
the injection defines the induced topology on ]0, 1[. Then the homeomorphism g identifies
]0, 1[ and S1 \ {∗}.

2. Cylinder
Let A = {(0, t), t ∈ I} and B = {(1, t), t ∈ I} be two subsets of I2 and let h : A −! B be
the homeomorphism defined by h((0, t)) = (1, t), t ∈ I.
Let p : I −! S1 be the continuous surjection defined by p(s) = e2iπs. Let f : I2 −! S1 × I
be the map defined by f((s, t)) = (p(s), t). If (s, t) ∈ A, i.e. (s, t) = (0, t), then f((0, t)) =
(1, t) = f(1, t) = f(h(0, t), t). Then f is a continuous surjection so that f is a quotient
map. The equivalence relation Rf = RAB is in fact defined by the homeomorphism h and
we have the following commutative diagram.

I2 f //

p ##

S1 × I

I2/RAB

g

∼=

99

Notice that the square represents the cylinder S1 × I, the two vertical sides with the two
upwards arrows, represent the homeomorphism h, i.e. the gluing. The two horizontal sides
without any arrow, represent the boundary of the cylinder.
Define the “dual” construction (exercise).
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More generally, let X be a topological space. Then, X × I is called the cylinder on X.
As exercise, determine the homeomorphism g.

Figure 4.1 – Cylinder

3. Möbius strip
Let A = {(0, t), t ∈ I} and B = {(1, t), t ∈ I} be two subsets of I2 and let h : A −! B
be the homeomorphism defined by h((0, t)) = (1, 1 − t), t ∈ I. Let RAB be the equivalence
relation defined by the homeomorphism h.
I2/RAB is the Möbius1 strip.
Notice that Möbius strip is not a product of two spaces. It is represented by the square with
some arrows on the vertical sides upwards for one and downwards for the other one. The
two horizontal sides are the boundary of the Möbius strip, i.e. a circle.

Figure 4.2 – Möbius strip

4. Torus
Let A = {(0, t), t ∈ I}∪{(s, 0), s ∈ I} and B = {(1, t), t ∈ I}∪{(s, 1), s ∈ I} be two subsets
of I2 and let h : A −! B be the homeomorphism defined by h((s, 0)) = (s, 1), s ∈ I and
h((0, t)) = (1, t), t ∈ I.
Let f : I2 −! S1×S1 be the continuous surjection defined by f(s, t) = (e2iπs, e2iπt). Then f
is a continuous surjection so that f is a quotient map. The equivalence relation Rf = RAB

1August Ferdinand Möbius (November 17, 1790 - September 26, 1868) was a German mathematician and
theoretical astronomer.
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is defined by the homeomorphism h and we have the following commutative diagram..

I2 f //

p ##

S1 × S1

I2/RAB

g

∼=

99

T = S1 × S1 is called the Torus.
As exercise, determine the homeomorphism g.

Figure 4.3 – Torus

5. Klein bottle
Let A = {(0, t), t ∈ I} ∪ {(s, 0), s ∈ I} and B = {(1, t), t ∈ I} ∪ {(s, 1), s ∈ I} and let
h : A −! B be the homeomorphism defined by h((s, 0)) = (1 − s, 1), s ∈ I and h((0, t)) =
(1, t), t ∈ I .
I2/RAB is the Klein2 bottle.
Notice that the Klein bottle is not a product of spaces. It is represented by the square with
the arrows on two vertical sides are upwards, and with the double arrows on the horizontal
sides are to the right for one and to the left for the other one. There is no boundary.

2Christian Felix Klein (25 April 1849 - 22 June 1925) was a German mathematician, known for his work in
group theory, function theory, non-Euclidean geometry, and on the connections between geometry and group
theory.
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Figure 4.4 – Klein bottle

The Klein bottle was discovered in 1882 by Felix Klein.
The bottle is a one-sided surface - like the well known
Möbius strip - but is even more fascinating, since it is
closed and has no border and neither an enclosed inte-
rior nor exterior.
The Möbius strip has a boundary homeomorphic to the
circle S1. Moreover, the Möbius strip can be embedded
in the Euclidean space R3, but the Klein bottle cannot.

Figure 4.5 – Felix Klein

Remark 4.4.2. The Klein bottle can be obtained by gluing two Möbius strips along their
boundaries, as it is shown in the following pictures.
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Remark 4.4.3. The picture of the Klein bottle in the Euclidean space R3 shows that the
bottle has self intersection set, which is not. It is not possible to embed the Klein bottle in
R3. It can be shown that there exists some embedding into R4.

6. Cone
For any space X, the cone CX of X is the quotient space (X × I)/R where R is the
equivalence relation (x, 1)R(x′, 1) for all x, x′ ∈ X. A continuous map f : X −! Y
induces a continuous map Cf : CX −! CY .

7. Suspension
Let J be the interval [−1,+1]. For any space X, the suspension SX of X is the quotient
space (X × J)/R where R is the equivalence relation where (x, 1)R(x′, 1),
(x,−1)R(x′,−1), (x, t)R(x, t) for all x, x′ ∈ X, t 6= −1, 1.
It is easy to verify SS0 is homeomorphic to S1.
SX is homeomorphic to CX/X.
A continuous map f : X −! Y induces a continuous map Sf : SX −! SY .

8. Real projective space
Let Rn \ {0} the subspace of Rn. Identify two points of Rn \ {0} iff they lie on the same
straight line through the origin. The space (Rn \ {0})/R is called the real projective
space and it is denoted Pn−1(R). The real projective space can also be defined as the
quotient space Sn/ ∼ where x ∼ −x.

Figure 4.6 – The real projective plane P2(R)

9. Join
Let X and Y be two topological spaces. Let X × Y × I where I = [0, 1] is the subspace of
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R with the standard topology. Define the equivalence relation ∼ as follows:

(x, y1, 0) ∼ (x, y2, 0) for any y1, y2 ∈ Y

(x1, y, 1) ∼ (x2, y, 1) for any x1, x2 ∈ X

Definition 4.4.4. The quotient space (X × Y × I)/ ∼ is called the join of X and Y and
it is denoted X ∗ Y .

I × I × I I ∨ I

Figure 4.7

Example 4.4.5. • Let Y = {a} be a one-point set. Then X ∗ {a} ∼= C(X).

• Let Y = S0 = {a, b}. Then X ∗ S0 ∼= S(X).

• More generally, X ∗ Sn ∼= S(S(· · ·SX) · · · ), the iterated n+ 1-suspension of X.

• Sn ∗ Sm ∼= Sn+m+1.

• C(X) ∗ C(Y ) ∼= C(X ∗ Y ).

• Dn × Dm ∼= C(Sn−1)× C(Sm−1) ∼= C(Sn−1 ∗ Sm−1) ∼= Dn+m, where Dn is the disc of Rn.

• Dn ∗ Dm ∼= Dm+n+1.

4.4.3 Spaces with Base Points
Let X be a topological space and x0 ∈ X. then (X,x0) is called space with base point x0. These
spaces are very important in homotopy theory. Let (X,x0) and (Y, y0) be two spaces with base
points. We will considered the base-point-preserving continuous maps f : X −! Y such that
f(x0) = y0.
Given the spaces with base points (X,x0) and (Y, y0); then the product X × Y is always given
the base point (x0, y0).
The quotient space of a space with base point x0 has a natural base point p(x0) where p is the
canonical surjection.
However, for some other constructions, sum, suspension, join, there is no such natural base point
and we need to proceed to some modifications.

• Wedge of two topological spaces with base points
We leave as an exercise to extend all these results to the wedge of a family of topological
spaces.
The wedge has the role of the sum for the spaces with base points.
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Definition 4.4.6. Let X and Y be two topological spaces, with base points x0 and y0. The
wedge of (X,x0) and (Y, y0), denoted X ∨ Y is defined as the quotient space (X

∐
Y )/Z

where Z = {(x0, 0), (y0, 1)}. Recall that we defined X
∐
Y as (X × {0}) ∪ (Y × {1}).

In the notation X ∨ Y , the base points are suppressed. Strictly speaking, we should
write (X,x0) ∨ (Y, y0), but for simplicity’s sake, we take the base points x0 and y0 to be
understood.
Notice that we have the natural maps ιX : X −! X ∨Y and ιY : Y −! X ∨Y . Moreover,
there exist two other maps pX : X ∨ Y −! X (and pY : X ∨ Y −! Y ) given by:

– pX ◦ ιX = IdX and pX ◦ ιY = x0

– pY ◦ ιY = IdY and pY ◦ ιX = y0

Suppose that X = Y , then, we define the folding map ∇ : X ∨X −! X induced by the
map of the disjoint union to X that sends the point (x, i), i = 0, 1, to the point x ∈ X.
The map ∇ is continuous (exercise).

Proposition 4.4.7. Let Xi, Yi, i = 1, 2 be some topological spaces with base points and let
fi : Xi −! Yi, i = 1, 2 be some base-point-preserving continuous maps. Then, there exists
a base-point-preserving continuous map f = f1 ∨ f2 : X1 ∨X2 −! Y1 ∨ Y2 such that:

1. if gi : Yi −! Zi, i = 1, 2 are two base-point-preserving continuous maps, then
(g1 ∨ g2) ◦ (f2 ∨ f2) = (g1 ◦ f1) ∨ (g2 ∨ f2).

2. if each fi, i = 1, 2 is a copy of f : X −! Y , then f ◦ ∇X = ∇Y ◦ (f ∨ f).

Proof:(exercise). �

It is possible to regard X ∨ Y as a subspace of X × Y as follows:

Proposition 4.4.8. Let (X,x0) and (Y, y0) be two base point topological spaces. Let Z
be the subspace of X × Y consisting of all points with “at most” one co-ordinate different
from the base point, i.e. Z = {(x, y) ∈ X × Y | x = x0 or y = y0}. Then there is a
homeomorphism from X ∨ Y onto Z.

Proof: There is an obvious map f from XqY to Z that sends (x, 0) (resp. (y, 1)) ∈ XqY
to the point of (x, y0) (resp. (x0, y)) ∈ Z. In fact, f is an identification map: it is certainly
onto.
Let U ⊂ Z, then U = ({x0} × UY ) ∪ (UX × {y0}) where UX ⊂ X and UY ⊂ Y . Then
f−1(U) = (UX × {0}) ∪ (UY × {1}) mod {(x0, 0), (y0, 1)}.
Suppose f−1(U) open , then U is open in Z. Finally, f identifies together the base points
of X and Y , so f induces a bijection from X ∨ Y to Z that is a homeomorphism. �

• Smash Product (Tensor Product)

Definition 4.4.9. Let (X,x0) and (Y, y0) be two base point topological spaces. Then the
smash product (also called tensor product) of the two spaces X and Y is denoted
X ∧ Y = (X × Y )/(X ∨ Y ).

In the notation X ∧ Y , the base points are suppressed. Strictly speaking, we should
write (X,x0) ∧ (Y, y0), but for simplicity’s sake, we take the base points x0 and y0 to be
understood.
Let π : X ∨ Y −! X ∧ Y be the canonical projection. The point π(x0 ∧ y0) will be taken
as the base point of X ∧ Y .
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Exercice 4.4.10. Prove there exists a canonical homeomorphism X ∧Y −! Y ∧X (com-
mutativity of the smash product).

Remark 4.4.11. The smash product is not, in general, associative, i.e. X ∧ (Y ∧ Z) 6∼=
(X ∧ Y ) ∧ Z). However, we will see later (section on compact spaces), that under some
specific conditions, the smash product is associative.

Proposition 4.4.12. Let X1, X2, Y1, Y2 be four topological spaces with base points and let
fi : Xi −! Yi, i = 1, 2 be two continuous maps. Then, there exists a continuous map
f1 ∧ f2 : X1 ∧X2 −! Y1 ∧ Y2 such that if hi : Yi −! Zi, i = 1, 2 are two continuous maps,
then

(h1 ∧ h2) ◦ (f1 ∧ f2) = (h1 ◦ f1) ∧ (h2 ∧ f2)

Proof: (exercise) �

• Reduced Cone
Let (X,x0) be a base point space. Define the base point of the cone CX as π({x0} × I)
where π : X × I −! CX is the canonical projection. We denote it as C(x, x0). It can be
view as (X × I)/(X × {1} ∪ ({x0} × I), i.e. as (X,x0) ∧ (I, 1).

• Reduced Suspension
Let (X,x0) be a base point space. Define the reduced suspension s(X,x0) or s(X) as
the quotient space SX/π({x0} × J). Let π : SX −! s(X,x0) be the canonical projection.
Then π({x0} × J) is chosen as the base point of s(X,x0).
Show that s(X,x0) is homeomorphic to the quotient space of the cylinder X × J by
X × ({−1,+1} ∪ {x0} × J).

• Join
Let (X,x0) and (Y, y0) be two base points spaces. Then the join (X,x0) ∗ (Y, y0) is defined
as the quotient space (X ∗ Y )/π({x0} × {y0} × I). The base point of (X,x0) ∗ (Y, y0) is
chosen as p({x0} × {y0} × I) where p is the quotient map.

4.4.4 Fibered products

Let f : X −! Z and g : Y −! Z be two continuous maps. and let pX : X × Y −! X,
pY : X × Y −! Y be the two canonical surjections.
We define the fibered product of (f, g)

X
∏
f,g

Y = {(x, y) ∈ X × Y | f(x) = g(y)} ⊂ X × Y

The fibered product is also denoted X
∏
Z

Y (cf.1.3.7).

For any space W and h : W −! X, g : W −! Y , continuous maps, there exists one continuous
map l : W −! X

∏
f,g

Y making commutative the following diagram.
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We also call pX for PX ◦ ι where ι is the canonical injection (and similarly for pY ).

W

h

��

k

&&

l

$$
X
∏
f,g

Y

pX

��

pY
// Y

g

��
X

f // Z

Example 4.4.13. Let X be a topological space, A, B two subspaces of X. Then A
∏
ιA,ιB

B = A∩B.

(exercise)

Example 4.4.14. Let X,Y be two topological spaces, f : X −! {∗}, g : Y −! {∗}. Then
X
∏
f,g

Y = X × Y . (exercise)

4.4.5 Fibered sums

Let f : Z −! X and g : Z −! Y be two continuous maps. and let ιX : X −! X
∐
Y,

ιY : Y −! X
∐
Y be the two canonical injections. Define the equivalence relation ∼ on X

∐
Y

as follows, let u, v ∈ X
∐
Y , then u ∼ v if there exists z ∈ Z such that ιX ◦ f(z) = ιY ◦ g(z).

The quotient space X
∐
Y/ ∼ is called the fibered sum of (f, g) along Z and denoted X

∐
f,g

Y

or X
∐
Z

Y (cf.1.3.7).

We also call ιX for ιX ◦p where p : X×Y −! X×Y/ ∼ is the canonical surjection (and similarly
for ιY ).

Z
g //

f

��

Y

ιY

��
h

��

X
ιX //

k
,,

X
∐
f,g

Y

l

$$
W

Let A be a closed subset of X and f : A −! Y be a continuous map. We denote

X ∪f Y = X
∐
ιA,f

Y

the attaching of Y to X along f .

Remark 4.4.15. If Z = ∅, then X
∐
f,g Y = X

∐
Y .
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Cylinder of a Map. Cone of a Map

• Cylinder of a map, also called Mapping Cylinder

Let f : X −! Y be a continuous map. Let X
ιX //
f1

// X
∐
Y be the maps x 7−! ιX(x) =

(0, x) and x 7−! f1(x) = (1, f(x)). Let Mf = (I × X)
∐
ιX ,f

Y be the fibered sum called

cylinder of the map f . We have the following diagram

X
f //� _

ιX

��

Y

j

��
I ×X i // Mf

where i and j are the canonical maps andMf is the quotient space ((I×X)
∐
Y )/ ∼ where

∼ is the equivalence relation u ∼ v ⇐⇒

 u = v or
u = (0, x), v = f1(x) or

u = (0, x), v = (0, x′), f(x) = f(x′)

Figure 4.8

The map f̃ = i ◦ ιX is injective, so r : Mf −! Y is a retraction. The following diagram is
commutative

X
f̃ //

f

��

Mf

r
~~

Y

• Cone of a map, also called Mapping Cone
Let f : X −! Y be a continuous map and let ι : X ↪−! CX be the inclusion. We define
Cf = CX

∐
ι,f Y as the fibered sum which is called the cone of the map f .

Example 4.4.16. – Let f : Sn−1 ↪−! Bn be the inclusion. Then Cf ∼= Sn.
– Let f : Sn−1 −! Pn−1(R) be the canonical surjection. Then Cf ∼= Pn(R).
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4.4.6 Exercises
1. Let Y be a topological space and X a subspace. Let c : X −! {∗} be the unique map.

Show that {∗}
∐
c,ι

Y ∼= Y/X where ι : X −! Y is the inclusion.

2. Let Sn−1 be the n − 1-sphere, and let Bn be the closed unit ball of the Euclidean space

Rn. Consider the two maps Bn
//

j

i
// Sn where i(x) = (x1, . . . , xn,

√
1− ‖ x ‖2) and

j(x) = (x1, . . . , xn,−
√

1− ‖ x ‖2). Show that the following diagram defines Sn as a fibered
sum, i.e. Sn ∼= Bn

∐
c,c

Bn, and c : Sn−1 −! {∗}:

Sn−1 c //

c

��

Bn

i

��
Bn

j // Sn

3. Let ι : Sn−1 ↪−! Bn be the inclusion, let p : Bn −! Sn be the map given by p(x) =(
2
√

1− ‖ x ‖2x1, . . . , 2
√

1− ‖ x ‖2xn, 2 ‖ x ‖2 −1
)
and let k : {∗} −! Sn that sends the

point ∗ onto the North pole (0, . . . , 0, 1). Show that the following diagram defines Sn as a
fibered sum, i.e. Sn ∼= {∗}

∐
h,ι

Bn:

Sn−1 �
� ι //

h

��

Bn

p

��
{∗} k // Sn

We can show that Bn/Sn−1 ∼= {∗}
∐
h,ι

Bn.

4. Imagine you are a little two-dimensional bug living inside the square diagram for the Mobius
strip (resp. Klein bottle). You decide to go for a walk. Trace your path.

5. Let X be a topological space and let I = [0, 1]. Define the equivalence relation on X × I
whose the equivalence classes are the one-point set {(x, t)} where x ∈ X, t ∈ I, t 6= 1 and
the set X × {1}. The quotient space, denoted C(X) is also called the cone of X. For all
x ∈ X, denote f(x the canonical image of (x, 0) in C(X).

(a) Show that f is a homeomorphism from X onto f(X).
(b) Show that X is Hausdorff iff C(X) is Hausdorff.

6. The circle S1 is the quotient space of [0, 1] ⊂ R. On the other hand, it is a subspace of R2.
Are the quotient and the induced topologies the same?

7. The cylinder, the Möbius strip and the torus are obtained as quotient spaces of the subspace
[0, 1]2 ⊂ R2 and they have the quotient topology. On the other hand, they are subspaces
of R3, and as such, they have the induced topology.
Are these two topologies are the same or not?
Notice that the Klein bottle is not a subspace of R3; it is shown that it is a subspace of R4.
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8. Give an example of a Hausdorff space which has a quotient space which is not Hausdorff.

9. Give an explicit description of the quotient space of the segment [0, 3] by the equivalence
relation whose the partition consists of [0, 1], ]1, 2], ]2, 3].

10. Let X and Y be two topological spaces, A ⊂ Y , and let f : A −! X be a continuous map.
Let X

∐
Y be the disjoint union. Define the partition of X

∐
Y given by the one-point

sets {y} where y ∈ Y \ A and the sets {a, f(a)} where a ∈ A. Denote Rf the equivalence
relation defined by this partition and denote X ∪f Y the quotient space. We also say that
X ∪f Y is obtained by gluing the space Y to the space X via f . Prove that if X is a
one-point set, then X ∪f Y is Y/A.

11. Obtain the sphere S3 by gluing two copies of the solid torus S1 × D2 via the map

S1 × S1 −−−! S1 × S1

(x, y) 7−−−! (y, x)

12. Let X be a set and X1, X2 two subsets whose union is X. Assume that (Xi, τi), i = 1, 2
such that the two topologies coincide on X1 ∩X2 and X1 ∩X2 is open both for τ1 and τ2.
Show there is a unique topology τ on X inducing upon each Xi the topology τi.
Let X = R \ {0}∪ {01, 02}, Xi = R \ {0}∪ {0i}, i = 1, 2. Give on Xi the standard topology
on R.
Show that the topology τ on X is not Hausdorff, so is not metric.

13. Obtain the Klein bottle by gluing two copies of the cylinder S1 × I to each other.

14. Let fi : Xi −! Yi, i = 1, 2 be two continuous onto maps such that Yi has the quotient
topology determined by fi, i = 1, 2. Show that the two maps fi define the continuous map
f : X1 ×X2 −! Y1 × Y2.
Show that f is onto and Y1 × Y2 as product space is the same as the quotient space
determined by f , i.e. the product topology and the quotient topology on Y1 × Y2 are the
same.

15. Is a quotient space of a subspace the same as a subspace of a quotient space?
Let f : X −! Y be a map which is onto, Y has the quotient topology determined by f , A
is a subspace of X, and B = f(A) ⊂ Y . Then, we can either topologize B as a subspace
of Y , or give it the quotient topology determined by the map f|A : A −! B. Are the two
topologies on B the same?
Let X be a rectangle and Y is a cylinder.

X = {(x, y) ∈ R2 | 0 ≤ x ≤ 2π, 0 ≤ y ≤ 1}

Y = {(x, y, z) ∈ R3 | x2 + y2 = 1, 0 ≤ z ≤ 1}

f : X −−−! Y

(x, y) 7−−−! (cosx, sinx, y)

Let A = {(x, y) ∈ X | 0 ≤ x < 2π, y = 0}. Describe B = f(A) and show that B is
homeomorphic to A. What about the two topologies on B?

16. Under the same hypotheses as in the previous exercise, if A is closed in X, and f(C) is
closed for any closed set C in X, or if A is open and f(O) is open for any open set O in
X, show that the subspace and the quotient topologies on B are the same.
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17. Show that X ∧ S1 ∼= SX.

18. Show that CX ∼= X ∧ I.

19. Show that (X ∨ Y ) ∧ Z ∼= (X ∧ Z) ∨ (Y ∧ Z).

20. Show that for each m,n ≥ 0,Sm+n is homeomorphic to Sm ∧ Sn. Find two such distinct
homeomorphisms. (Hint: 1. Consider the discs Dm and Dn. 2. Consider Sm+n as a
subspace of the disc Dm+n+1).

21. Let ι : Sn−1 ↪−! Bn be the inclusion and let f : Sn−1 −! X be a continuous map.
Show that X can be identified with a closed subset of Bn

∐
ι,f

X and (Bn
∐
ι,f

X) \ X is

homeomorphic to any open ball of dimension n.

22. Let A and B be two closed subsets of the topological space X. Let ιA : A ∩B ↪−! A and
ιB : A ∩B ↪−! B be the inclusions. Show that A

∐
ιA,ιB

B ∼= A
∏
ιA,ιB

B.

23. The n-dimensional torus Tn is defined by induction as T1 = S1, Tn = Tn−1 × T1. Let
X (resp. Y ) be the subspace of R)3 obtained from the circle of equation (y − 2)2 + z2 = 1
(resp. (y − 2)2 + z2 ≤ 1) making a rotation of angle 2π around the axis z.

(a) Show that there exists a homeomorphism f : Y −! B2 × S1 such that the restriction
f|X is a homeomorphism from X onto S1 × S1.

(b) Show that the fibered sums Y
∐
ι,ι

Y and (B2 × S1)
∐
g,g

(B2 × S1) are homeomorphic to

S2 × S1, where g = ι′ × IdS1 , ι′ being the inclusion of S1 into B2.

(c) LetX ′ (resp. Y ′) be the subspace
{

(u, v) ∈ R2 × R2 | ‖ u ‖2 + ‖ v ‖2= 1, ‖ u ‖2=
1

2

}
,(

resp.
{

(u, v) ∈ R2 × R2 | ‖ u ‖2 + ‖ v ‖2= 1, ‖ u ‖2≤ 1

2

})
.

Show that there exists a homeomorphism from X ′ onto S1 × S1.
Deduce that the fibered sum

(
B2 × S1

)∐
h,h

(S1 × B2) where h = ι′ × IdS1 , is homeo-

morphic to S3.
Notice that according to the way we glue two tori along their boundaries, we obtain
either S2 × S1 or S3. These two spaces are not homeomorphic.
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Chapter 5
Topological Properties

In this chapter, we will study some topological properties or topological invariants, i.e.
properties of topological spaces which are invariant under homeomorphisms. A property of a
topological space is topological if every homeomorphic spaces possess this property.
An important consequence is the following. Let X and Y be two topological spaces such that X
possesses the topological property P and Y does not, then X and Y are not homeomorphic.

5.1 Path-Connectedness

Let (X, τ) be a topological space and let x0, x1 ∈ X be two points (not necessarily distinct).
Consider [0, 1] as a subspace of R with the standard topology.

Definition 5.1.1. A path in X from x0 to x1 is a continuous map p : [0, 1] −! X such that
p(0) = x0 and p(1) = x1. If x0 = x1 then the path is also called a loop based at the point x0.

Notice that if there exists a path p from x0 to x1, then there exists a path q from x1 to x0, given
by q(t) = p(1− t).
The existence of a path from x0 to x1 depends on the two points and also on the topology on X
(see exercises).
In algebraic topology, the set of loops in a topological space gives some important informations
on the topology of the space.

Definition 5.1.2. The topological space X is said to be path-connected if for any two points
x0, x1 ∈ X, there exists a path in X from x0 to x1.

Such spaces are also called pathwise-connected, or arcwise-connected.
Notice that such a path is not necessarily unique. Moreover, don’t confuse the set {p(t) | t ∈ [0, 1]}
with the set {(t, p(t) | t ∈ [0, 1]} which is the graph of the path p. Different paths could defined
the same set of points. For example, let p be a path from x0 to x1. Then the paths p and
q : [0, 1] −! X such that q(t) = p(2t) for t ∈

[
0, 1

2

]
and q(t) = x1 for any t ∈

[
1
2 , 1
]
define the

same set of points but they are distinct paths.

Example 5.1.3. 1. R with the standard topology is path-connected.

2. More generally, the Euclidean spaces Rn are path-connected.
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3. The graph of a continuous map f : R −! R is path-connected.

4. The spheres Sn, n > 0 are path-connected.

5. However, S0 and R \ {0} are not path-connected.

6. A convex subset of Rn is path-connected. Any two points a, b can be joined inside the convex
subset by the path p defined by p(t) = (1 − t)a + tb, t ∈ [0, 1]. Notice that such path does
not exist in an arbitrary topological space.

Definition 5.1.4. Let (X, τ) be a topological space. The points a, b ∈ X are said to be path-
equivalent if there exists a path p in X such that p(0) = a and p(1) = b.
The path-equivalence classes are called path-connected components of X.

Notice that “path-equivalence” is an equivalence relation (exercise). So there exists a partition
of X into path-connected components. In particular, each point belongs to one path-connected
component where a path-connected component is a maximal subset (w.r.t. inclusion) such that
any pairs of points are path-connected.

Proposition 5.1.5. A continuous image of a path-connected space is path-connected.

Proof: Let f : X −! Y be a continuous map and suppose X is a path-connected space. We
have to show that f(X) is path-connected.
Let y0, y1 ∈ f(X). Then there exist x0, x1 ∈ X such that f(x0) = y0, f(x1) = y1. By assumption,
there exists a path p : I −! X such that p(0) = x0 and p(1) = x1, so that the map f ◦p : I −! Y
is a path such that f ◦ p(0) = y0 and f ◦ p(1) = y1. �

Corollary 5.1.6. Let X be path-connected space and let R be an equivalence relation on X.
Then the quotient space X/R is path-connected.

Proof: The proof is straightforward. �

Corollary 5.1.7. Path-connectedness is a topological property, i.e. let f : X −! Y be a
homeomorphism, then X is path-connected iff Y is path-connected.

Proof: The proof follows from the proposition. �

Corollary 5.1.8. The number of path-connected components is a topological invariant, i.e. then
there exists a bijection between the path-connected components of X and Y .

Proof: Let f : X −! Y be some homeomorphism. For any x, x′ ∈ X, there is path from x
to x′ iff there is a path from f(x) to f(x′). Let x̄ be the path-connected component of x, and
X/ ∼, Y/ ∼ the set of path-connected components of X and Y . Then there exists a bijection f̄
such that the diagram is commutative

X
f

∼=
//

pX

��

Y

pY

��
X/ ∼

f̄

'
// Y/ ∼

�

A topological space has only one path-connected component iff it is path-connected.
LetX and Y be two topological spaces. Suppose that the numbers of path-connected components
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are distinct, then X and Y are not homeomorphic. However, two topological spaces having the
same number of path-connected components are not necessarily homeomorphic.
For example, R and S1 are path-connected (one path-connected component), but they are not
homeomorphic. Suppose there exist a homeomorphism h : R −! S1, choose an arbitrary point
a ∈ R, then R \ {a} ∼= S1 \ {h(a)}. But R \ {a} has two connected components and S1 \ {h(a)}
is path-connected, so it does not exist some homeomorphism h : R −! S1.

5.1.1 Exercises
1. Prove that path equivalence is an equivalence relation.

2. Explain the examples 5.1.3.

3. Let (X, τ) be a topological space. Is it a path-connected space,

(a) If τ is the discrete topology?
(b) If τ is the trivial topology?

4. Determine the subspaces of R that are path-connected.

5. Let f : [a, b] −! R be a continuous map.
Show that for any y between f(a) and f(b), there exists x ∈ [a, b] such that f(x) = y.
(Intermediate value theorem).
Show that this result remains valid for any continuous map f : X −! R which takes any
value between f(a) and f(b), and where X is path-connected.
Assume that the Earth is the sphere S2, and the temperature is a continuous function
f : S2 −! R.
Show that there is a pair of diametrically opposite places that have the same temperature.

6. Let X be a metric space and let f : X −! R be a continuous function such that f(x) 6= 0
for all x ∈ X. Suppose that y, z ∈ X such that f(y) < 0 < f(z). Show that there is no
path from y to z.

7. Let L be a line of the Euclidean plane R2.
Show that R2 \ L is not path-connected but R2 \ {0} is path-connected.
More generally, let A be a p-dimensional affine subspace of Rn, where p < n, i.e. A is
defined by n− p linearly independent equations.
Is Rn \A path-connected?

8. Show that the product of two path-connected spaces is path-connected.

9. Let A and B two subspaces of the topological space X. Suppose that A and B are path-
connected and A ∩B 6= ∅, prove that A ∪B is path-connected.

10. Let A and B be two path-connected subsets of the topological space X such that A∩B 6= ∅.
Is A ∩B path-connected?

11. Let X be a path-connected space and let R be an equivalence relation on X. Recall that
the quotient space X/R is path-connected. Is S1 × S1 a path-connected space?

12. Let V be a real vector space of finite dimension n.

(a) Show that there exists a topology on V such that V is homeomorphic to Rp and
determine p.
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(b) Show that the map V × V −! V such that (x, y) 7−! x+ y is continuous.

(c) Let A and B be two path-connected subsets of V .
Show that A+B = {x+ y | x ∈ A, y ∈ B} is path-connected.

13. (a) Let X = {(x, y) ∈ R2 | x < y}.
Is X path-connected?

(b) Let F : X −! R be a continuous map such that F ((x, y)) 6= 0 for all (x, y) ∈ X.
Determine F (X).

(c) Let f : [0, 1] −! R be an injective continuous map.
Deduce that f is either strictly increasing or strictly decreasing .

14. Let f : [a, b] −! R be a continuous function, and y0 between f(a) and f(b).
Prove there exists x0 ∈ [a, b] such that f(x0) = y0. Is x0 unique?
Does this result remain valid for any interval, i.e. not necessary closed?

15. Let f : [a, b] −! [a, b] be a continuous function.
Prove there exists c ∈ [a, b] such that f(c) = c.
Does this result remain valid for the interval ]a, b[?
Is ]a, b[ a retract of [a, b]?
Is this result valid for Sn, n > 0?

16. Let U = {(x, sin π
x

) ∈ R2
∣∣ x ∈]0, 1[}. Then X = U ∪ {(0, 0)} ⊂ R2 is not path-connected.

(Hint: Suppose there exists a path p such that p(0) = (0, 0), p(1) = (1, 0). Let s =
sup{t

∣∣ p(t) = (0, 0)}. Thus prove that p(s) = (0, 0). By continuity of p, there exists δ > 0

such that if |s− t| < δ, then d
(
p(s), p(t)

)
<

1

2
. Hence, get a contradiction.)

Figure 5.1

17. The space Mn×n of all real n × n-matrices is a space homeomorphic to Rn2

. Find the
path-connected components of the subspaces:

(a) GL(n;R) = {A ∈Mn×n
∣∣ detA 6= 0}

(b) Same question with R replaced by C.
(c) {A

∣∣ A2 = I}

18. Let f : X −! Y be a homeomorphism.

(a) For any x ∈ X, prove the map f̃ : X \ {x} −! Y \ {f(x)} such that f̃(x′) = f(x′) for
any x′ 6= x, is a homeomorphism.

(b) Prove that the circle S1 is not homeomorphic to R.
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(c) Prove that R \ {0} and R \ {0, 1} are not homeomorphic.

(d) The real line R (with the standard topology) is not homeomorphic to the Euclidean
space R2.

19. For a path-connected topological space X, the point a ∈ X is a cut point of order k if the
complement X \ {a} consists of k path-connected components.
Show that any homeomorphism f : X −! Y between two path-connected topological
spaces establishes a bijection between cut points of fixed order k. Hence the number of cut
points of order k is a topological invariant.
Deduce that R and S1 are not homeomorphic.

5.2 Connectedness
There exists a weaker notion of connectedness than path-connectdness. We mentioned the special
role plays by subsets that are both open and closed (Remark 2.5.6.). Here is the explanation of
this assertion.

Definition 5.2.1. A topological space (X, τ) is said to be connected if X has only two subsets
∅ and X are both open and closed. Otherwise, X is said to be disconnected.

Proposition 5.2.2. The topological space X is connected iff X has no partition into two non-
empty open sets iff X has no partition into two non-empty closed sets.

Proof: (exercise)

Example 5.2.3. 1. (X, τ) where τ is the trivial topology is connected.

2. (X, τ) where τ is the discrete topology and card(X) ≥ 2 is disconnected.

3. The subspace Q ⊂ R is disconnected. (Hint: Q =
(
Q ∩

]
−∞,

√
2
[)
∪
(
Q ∩

]√
2,+∞

[)
).

4. R with the usual topology is connected, while R with the half-open topology is disconnected.

Lemma 5.2.4. The topological space X is connected iff any continuous map f : X −! {0, 1} is
constant ({0, 1} with the discrete topology).

Proof: =⇒) Suppose there exists a non constant continuous map f : X −! {0, 1}, so f is
surjective. Let U = f−1({0}) and V = f−1({1}). {0} and {1} are open sets so U and V are
open in X where X = U ∪ V , and U ∩ V = ∅. Thus U = X \ V is also closed and there exists a
subset U of X which is both open and closed and X is disconnected.
⇐=) Suppose X disconnected, i.e. X = O1 ∪ O2 where O1, O2 ∈ τ and O1 ∩ O2 = ∅. Let
f : X −! {0, 1} be the map such that f(O1) = {0}, f(O2) = {1}. Then f is continuous and non
constant. �

Notice that in the following, {0, 1} is considered as subspace of R (standard topology), so it is a
discrete space.

Proposition 5.2.5. The closure of a connected set is connected.

Proof: Let A ⊂ X be a connected set in the topological space X and let f : Cl(A) −! {0, 1} be
a continuous map. The restriction f

∣∣
A

of f to A is not surjective so, for example f(A) = {0}.
But f(Cl(A)) ⊂ Cl(f(A)) = Cl({0}) = {0} then f is not surjective and Cl(A) is connected. �
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Proposition 5.2.6. [0, 1] is connected.

Proof: Suppose [0, 1] disconnected, then [0, 1] = U ∪ V where U and V are non-empty disjoint
closed subsets. Take a ∈ U and b ∈ V and assume 0 ≤ a < b ≤ 1. Then the sets X = U ∩ [a, b]
and Y = V ∩ [a, b] are disjoint and closed in [0, 1]. Then supX = c is a limit point of X, hence
c ∈ X and c < b because b ∈ Y . Thus X∩]c, b] = ∅ so ]c, b] ⊂ Y and c ∈ Y is a limit point of
]c, b], then X ∩ Y 6= ∅ which is a contradiction. �

But X = [0, 1] \
{

1
2

}
is disconnected (as subspace of R) since

[
0, 1

2

[
and

]
1
2 , 1
]
are open in X

(not in R).

Lemma 5.2.7. Let (Uλ)λ∈Λ be a family of connected sets in the topological space X. If there
exists λ0 ∈ Λ such that for all λ ∈ Λ, Uλ0 ∩ Uλ 6= ∅, then

⋃
λ∈Λ

Uλ is connected.

Proof: Any continuous map f :
⋃
λ∈Λ

Uλ −! {0, 1} is constant on Uλ0
and takes the same value

on each Uλ, hence f is constant. �

Definition 5.2.8. A connected component of a topological space X is a maximal (w.r.t.
inclusion) connected subset of X.

Proposition 5.2.9. A connected component is closed.

Proof: Let A be a connected component of X. Then Cl(A) is connected (Prop.5.2.5) and
A ⊂ Cl(A) so from definition of the connected component, A = Cl(A) and A is closed. �

But a connected component need not to be open. Consider the subspace Q ⊂ R. The connected
components are the one-point sets. Let A ⊂ Q containing two points a < b. Let x /∈ Q such that
a < x < b. Then A = (A ∩ {y | y < x}) ∪ (A ∩ {y | y > x}). Then A is the disjoint union of two
open sets, hence any subset of Q containing more than one rational number is not connected.
Any non-empty set in R contains an open interval and infinitely many rational numbers.Then,
every non-empty open set in Q is infinite.

Each point of a topological space X belongs to one connected component. So there is a partition
of X into closed sets, the connected components.
If for any x ∈ X, the connected component containing x is {x}, then X is said to be totally
disconnected.

Proposition 5.2.10. Let X and Y be two topological spaces, X connected and let f : X −! Y
be a continuous map. Then f(X) is connected.

Proof: If f(X) is disconnected, then f(X) = U ∪ V where U, V are non-empty open subsets.
Thus X = f−1(U) ∪ f−1(V ) is a non-empty open subset which is a contradiction. �

Corollary 5.2.11. Let X be connected space and let R be an equivalence relation on X. Then
the quotient space X/R is connected.

The proof is straightforward. �

Corollary 5.2.12. 1. Connectedness is a topological property.

2. The number of connected components is a topological invariant.
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Proof: (exercise) �

Up to now, we introduced two concepts, path-connectedness an connectedness which seem with-
out any relation.

Proposition 5.2.13. Any path-connected space is connected.

Proof: Let X be a path-connected space. Suppose X disconnected, then X = U ∪ V disjoint
union of two non-empty open sets. Choose a ∈ U, b ∈ V and let p : [0, 1] −! X be a path such
that p(0) = a and p(1) = b. Then p−1(U)∩p−1(V ) = ∅ and p−1(U), p−1(V ) are non-empty open
subsets. Thus [0, 1] = p−1(U) ∪ p−1(V ) so [0, 1] is disconnected which is a contradiction (prop.
5.2.6). �

Example 5.2.14. R is connected. (We already know that R is path-connected).

Remark 5.2.15. A connected space is not necessarily path-connected.

Example 5.2.16.
{

(x, y) ∈ R2
∣∣ y = sin

π

x
, x ∈]0, 1]

}
∪
{

(0, 0) ∈ R2
}
is connected but it is not

path-connected (exercise 5.1.1.15)(Notice that (0, 0) ∈ Cl
({

(x, y) ∈ R2
∣∣ y = sin

π

x
, x ∈]0, 1]

})
.

Lemma 5.2.17. Let {Xi, i ∈ I} be a family of connected subspaces of the topological space X.
Suppose there exists Xi0 such that for any i ∈ I, Xi0 ∩Xi 6= ∅. Then ∪i∈IXi is connected.

Proof: Any continuous map f :
⋃
i∈I

Xi −! {0, 1} is constant on Xi0 and takes the same value

on each Xi, hence f is constant. �

Proposition 5.2.18. If the two spaces X and Y are connected, then X × Y is connected.

Proof: Let x ∈ X, then {x}×Y ⊂ X×Y is connected since it is homeomorphic to Y . Similarly,
X × {y} is connected for any y ∈ Y . Then ({x} × Y ) ∪ (X × {y}) is connected because (x, y) is
a point of the overlap. Finally, from the previous lemma, X × Y =

⋃
y∈Y

(
({x} × Y )∪ (X × {y})

)
is connected. �
The converse is true. (exercise).

Corollary 5.2.19. �

1. Rn is connected.

2. The torus S1 × S1 is connected.

Proof: The proof is straightforward. �

Notice that Sn, for n > 0, is connected because Sn \ {a} ∼= Rn for a ∈ Sn and Cl(Sn \ {a}) = Sn.

5.2.1 Exercises
1. Let f : [a, b] −! R be a continuous real-valued map. Let y0 be a real number between f(a)

and f(b). Show there is a number c ∈ [a, b] for which f(c) = y0.

2. Show that the topological subspace X = {(x, y) ∈ R2 | x 6= 0} ⊂ R2 is not connected.
Define the connected components.
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3. For any n ∈ Z, define X =
{
t ∈ R

∣∣ |t− n| < 1
2

}
. Show that the sets Jn =

]
n− 1

2 , n+ 1
2

[
,

n ∈ Z, are the connected components of X.

4. Let (X, τ1) and (X, τ2) be two topological spaces where τ2 is finer than τ1. If (X, τ1) is
connected, is (X, τ2) connected? If (X, τ2) is connected, is (X, τ1) connected?

5. Let A,B ⊂ R2. Give some examples such that

- A,B connected and A ∩B disconnected.

- A,B disconnected and A ∪B connected.

- A,B connected, Cl(A) ∩ Cl(B) 6= ∅ and A ∪B disconnected.

6. Let f : [a, b] −! [a, b] be a continuous map on the closed subspace [a, b] ⊂ R. Then, there
exists c ∈ [a, b] such that f(c) = c. Show that this property does not remain true if [a, b] is
replaced by the real space R, by the interval [a, b[.

7. Show that the cylinder, the Möbius strip, the torus and the Klein bottle are not homeo-
morphic.

8. Let C be a circle in the affine plane A2(R).
Show that A2(R) \ C is disconnected w.r.t. standard topology and connected w.r.t. Zariski
topology.

9. Is R with the half-infinite topology a connected space?

10. Show that the Cantor set is totally disconnected.

5.3 Compactness

Compactness is a sort of topological counterpart for the finiteness in the context of set theory.
It is a generalization of the subset of the Euclidean spaces which are both closed and bounded.
The term compact was introduced into mathematics by Maurice Fréche1t in 1906. Compactness
plays an extremely important role in mathematical analysis, because many classical and impor-
tant theorems of 19th century analysis, such as the extreme value theorem, are easily generalized
to this situation.

5.3.1 Compact Spaces

Let (X, τ) be a topological space and let A ⊂ X.

Definition 5.3.1. A collection of subsets of X is said to cover A if every point of A belongs to
at least one subset of the collection. A subcover is a subfamily of a cover which is a cover. If
all the subsets are open, we say open cover of A.

Definition 5.3.2. X is said to be compact if every open cover of X has a finite subcover.
1Maurice René Fréchet; 2 September 1878 - 4 June 1973) was a French mathematician. He made major

contributions to the topology of point sets and introduced the entire concept of metric spaces. He also made
several important contributions to the field of statistics and probability, as well as calculus. His dissertation
opened the entire field of functionals on metric spaces and introduced the notion of compactness. Independently
of Riesz, he discovered the representation theorem in the space of Lebesgue square integrable functions.
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Remark 5.3.3. This definition does not mean that a space X is compact if there exists a finite
open cover of X, (for example, simply take the open finite cover {X}). However, any topological
space (X, τ) where τ is finite is compact.

Remark 5.3.4. Given an open cover (Oi)i∈I . All the points of the same Oi are “near” w.r.t.
the cover, and two points in different Oi are “far”. But if they belong to two Oi of the cover
whose the intersection is not empty, they are not too far. They are “near” up to one step.
So, in a compact space, two points are “near” up to finitely many steps, and all the points are
not “too far” from each others w.r.t. the given cover.
If the space is not compact, there is some cover with no finite subcover, hence some points are
“infinitely far” from some others w.r.t. the cover.

Remark 5.3.5. Roughly speaking, compact topological spaces have “few” open sets, while Haus-
dorff ones have “many” open sets, two distinct points have disjoint open neighbourhoods. A trivial
topological space is always compact (but never Hausdorff unless X is empty or a point), a discrete
topological space is always Hausdorff, but only compact, if X has finitely many elements. In this
sense, compact Hausdorff spaces represent a happy middle ground.

Example 5.3.6. In the following examples, the real space R is equipped with the standard topol-
ogy, if there is no other mention

1. R, is not compact (Consider the open cover (Un)n∈N∗ where Un =]− n,+n[).

2. ]0, 1[, ]0, 1]] as subspaces of R are not compact.

3. The closed intervals [a, b] ⊂ R are compact (Borel-Lebesgue theorem 5.3.26).

4. Any finite topological space is compact.

5. Let (R, τ) where O ∈ τ if either O = ∅ or R \O is a finite set. Then (R, τ) is compact.

Following the examples 1 and 5, notice that the same set can be compact for some topology and
non compact for another one.
We can also define compactness in terms of closed sets.

Definition 5.3.7. A family of subsets of X is said to have the finite intersection property
if the intersection of any finite subfamily is non-empty.

Proposition 5.3.8. X is compact iff for any family of closed subsets of X with the finite
intersection property, the intersection of the family is not empty.

Proof: =⇒) Let C = {Vλ}λ∈Λ be a family of closed sets with the finite intersection property.
Suppose

⋂
λ

Vλ = ∅, then
⋃
λ

(X \ Vλ) is an open cover of X. Therefore, there exists a finite sub-

cover of X, such that X =

k⋃
i=1

(X \ Vλi) = X \
k⋂
i=1

Vλi then
k⋂
i=1

Vλi = ∅ which is a contradiction,

so
⋂
λ

Vλ 6= ∅.

⇐=) Let V = {Oλ}λ∈Λ be an open cover of X so
⋃
λ

Oλ = X and
⋂
λ

X \ Oλ = ∅. Then the

subsets X \Oλ are closed. If any finite intersection
⋂
i

(X \Oλi) 6= ∅, then
⋂
λ

(X \Oλ) 6= ∅ which

105



CHAPTER 5. TOPOLOGICAL PROPERTIES

is a contradiction. Hence, there exists some finite intersection,
⋂
i

(X \ Oλi) = ∅ and {Oλi} is a

finite subcover of X. �

Example 5.3.9. The subspace Q of R is not compact. (Hint: Suppose Q compact. Then for
any a > 0,Q∩ [−a, a] is closed then compact (lemma 5.3.11). Let x ∈ [−a, a]∩ (R \Q); then the

family of closed subsets
(
Q ∩ [−a, a] ∩

[
x− 1

n
, x+

1

n

])
n∈N∗

has an empty intersection although

any finite intersection is non empty; which is a contradiction.)

Open cover Finite intersection

∀(Oi)i∈I , Oi open such that
⋃
i

Oi = X, ∀(Vi)i∈I , Vi closed such that ∀(Vij ), j = 1, . . . , n,

∃(Oij ), j = 1, . . . , n such that
n⋃
j=1

Oij = X. such that
n⋂
j=1

Vij 6= ∅, then
⋂
i

Vi 6= ∅. .

5.3.2 Properties of Compact Spaces
Proposition 5.3.10. The topological space X is compact iff any filter on X has at least an
adherent point.

Proof: ⇐=): Let V = {Vλ}λ∈Λ be a family of closed sets such that the intersection is empty. If
the intersection of an arbitrary finite subfamily is not empty, then V defines a filter which would
have an adherent point. This adherent point should belong to any element of V, these elements
being closed sets; thus it is a contradiction.
=⇒): Let F be a filter without adherent point. Then the closure of the elements of the filter
defines a family of closed sets which contradicts the assumption. �

Lemma 5.3.11. Let A be a closed subset of a compact space X. Then A is compact.

Proof: Let V be an open cover of A. Let adjoin the subset X \A to get an open cover V ′ of X.
X is compact so the cover V ′ has a finite subcover, then V has a finite subcover of A. �

Remark 5.3.12. This result does not remain valid if the space X is not compact. For example,
let X = R with the standard topology. Then ]−∞, 0] is closed but not compact.

Lemma 5.3.13. Let f : X −! Y be a continuous map and let A be a compact subset of X.
Then f(A) is a compact subset of Y .

Proof: Let V be an open cover of f(A). Then A is covered by the open sets f−1(O) for O ∈ V.
But A is compact then there exists a finite subfamily {f−1(Oi)}i=1,··· ,k such that
A ⊂ f−1(O1) ∪ · · · ∪ f−1(Ok) and f(A) ⊂ O1 ∪ · · · ∪Ok. �

Remark 5.3.14. Notice that f−1(B) is not necessarily compact whenever B is a compact subset
of Y . For example, let f : R −! R : x 7! f(x) = y0 be the constant map which is continuous,
where R is equipped with the standard topology. Then {y0} is compact and f−1({y0}) = R which
is not compact.

Corollary 5.3.15. Let X be compact space and let R be an equivalence relation on X. Then
the quotient space X/R is compact.
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The proof is straightforward. �
Compact subspaces of Hausdorff spaces behave to some extent like points.

Proposition 5.3.16. Let X be a Hausdorff space and let K be a compact subset of X. Let
x ∈ X \K. Then there exists some open sets V,W ⊂ X such that x ∈ V,K ⊂W and V ∩W = ∅.

Proof: X is Hausdorff, so, for all y ∈ K, there exists some open sets Vx,y,Wx,y such that
x ∈ Vx,y, y ∈ Wx,y, Vx,y ∩ Wx,y = ∅. The set K is compact so there exists a finite set

{y1, . . . , yr} such that K ⊂ Wx,y1 ∪ . . . ∪Wx,yr . Define V =

r⋂
i=1

Vx,yi andW =

r⋃
i=1

Wx,yi . Then

V and W are open, x ∈ V, K ⊂W and V ∩W = ∅. �

Corollary 5.3.17. A compact subset of a Hausdorff space is closed.

Proof: (exercise) �

Corollary 5.3.18. Two disjoint compact subsets of a Hausdorff space have two disjoint open
neighbourhoods.

Proof: (exercise) �

Remark 5.3.19. • A compact subset of a metric space is closed.

• If the space X is not Hausdorff, then a compact subset is not necessarily closed. For
example, let X = {a, b} and τ = {∅, {a}, X}. Notice that (X, τ) is not Hausdorff. Then
{a} is compact, open and not closed.

Theorem 5.3.20. A continuous bijection from a compact space to a Hausdorff space is a
homeomorphism.

Proof: Let f : X −! Y be a continuous bijection where X is compact and Y is Hausdorff. Let
F be a closed subset of X. Then F is compact. Therefore f(F ) is compact and closed. So f
takes closed sets onto closed sets which prove that f−1 is continuous. �

Remark 5.3.21. If the continuous map is only surjective, then it is a closed quotient map.
If the continuous map is only injective, then it is an embedding.

A continuous bijection from a compact space to a metric space is a homeomorphism.

Example 5.3.22. Let ∼ be the equivalence relation on R defineds as follows: x ∼ y iff x−y ∈ Z.
Let T = R/ ∼ be the quotient space. Then we define the continuous surjection π : R −! T.
Let U = {z ∈ C||z| = 1} be the unit circle of R2 (after identification with C). Define the map
f : R −! U; x 7! f(x) = e2πix, then f is a surjection and f(x) = f(y) iff x − y ∈ Z so f
is compatible with the equivalence relation ∼ and f is continuous. Hence, there exists a map
g : T −! U such that f = g ◦ π and f is continuous iff g is continuous.
T is compact because T = π([0, 1]), π is continuous and [0, 1] is compact.
Finally, the map g : T −! U is a continuous bijection, T is compact, U is Hausdorff, then g is
a homeomorphism.

Lemma 5.3.23. Let X and Y be two topological spaces. Let K be a compact subset of Y and
let O be an open set of X × Y . Let V = {x ∈ X | {x} ×K ⊂ O}, then V is open in X.
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Proof: If O = ∅, then O is open.
If not, let x ∈ V . For each y ∈ K, there exist some open subsets OXy ⊂ X and OYy ⊂ Y such that
(x, y) ∈ OXy × OYy ⊂ O. The subset K is compact so there exists a finite set {y1, . . . , yr}
such that K ⊂ OYy1 ∪ . . . ∪ O

Y
yr . Set Nx = OXy1 ∩ . . . ∩ O

X
yr then Nx is open in X and

Nx × K ⊂
r⋃
i=1

Nx × OYyi ⊂
r⋃
i=1

OXyi × O
Y
yi ⊂ O so that Nx ⊂ V . It follows that V =

⋃
x∈V

Nx

and finally V is open. �

Theorem 5.3.24. A finite product of topological spaces X1 × · · · ×Xn is compact iff each Xi,
i = 1, . . . , n, is compact.

Proof: It is enough to prove this result for the product of two spaces X and Y .
Suppose X and Y are compact.
Let V be an open cover of X × Y .
For any y ∈ Y and any x ∈ X, there exists some open neighbourhoods OXxy of x, OYxy of y, there
exists Vxy ∈ V such that (x, y) ∈ OXxy ×OYxy ⊂ Vxy.
{OXxy ×OYxy | y ∈ Y } is an open cover of {x} × Y
Let x ∈ X, then {x} × Y is a compact subset of X × Y , as the image of a compact space under
the continuous map

Y −! X × Y
y 7−! (x, y)

{x} × Y is compact, so there exists a finite subcover
{
OXxyk ×O

Y
xyk
| k = 1, . . . , p

}
of {x} × Y .

Let Ox =

p⋂
k=1

OXxyk , then Ox × Y ⊂
p⋃
k=1

Vxyk .

{Ox | x ∈ X} is an open cover of the compact space X, so there exists a finite subcover

(Oxj )j=1,...,r of X, then X × Y ⊂
r⋃
j=1

(Oxj × Y ) ⊂
p⋃
k=1

r⋃
j=1

Vxjyk . �

Another Proof: Let V be an open cover of X × Y .
Let x ∈ X, then {x}×Y is a compact subset of X×Y as proved above. There exists a finite sub-

family O1, . . . , Or of V such that
r⋃
i=1

Oi ⊃ {x}×Y . Denote Vx = {x′ ∈ X | {x′} × Y ⊂
⋃r
i=1Oi}.

From lemma 5.3.23, x ∈ Vx and Vx is open. Notice that Vx × Y is covered by finitely many
open sets of V. Moreover, {Vx | x ∈ X} is an open cover of X then there exists a finite set

{x1, . . . , xs} ⊂ X such that X = Vx1
∪· · ·∪Vxs ,

s⋃
i=1

Vxi×Y = X×Y and each Vxi×Y is covered

by a finite subfamily of V, so X × Y is compact.
Conversely, if X×Y is compact, then X ∼= X×{y} ⊂ X×Y and X×{y} is compact (exercise). �

Notice that if X is compact, then X × {y} is compact. Suppose Y is infinite, then it does not
imply that X × Y is compact (as ∪yX × {y}).

Example 5.3.25. • The cylinder, the Möbius strip, the torus and the Klein bottle are com-
pact as quotient spaces of the compact space [0, 1]× [0, 1].

• [0, 1]× [0, 1[ is not compact.
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• The cone CSn is homeomorphic to the ball Bn+1 = {x ∈ Rn+1| d(x, 0) ≤ 1}. For, let
f : Sn × I −! CSn the canonical surjection, and g : Sn × I −! Bn+1 the map g(x, t) =
(1− t)x; then g ◦f−1 is bijective, and since Sn× I is compact, the result follows. Similarly,
the suspension SSn of Sn is homeomorphic to Sn+1.

More generally, the Tychonoff2 Theorem says that an arbitrary product of compact spaces is
compact.

5.3.3 Bolzano-Weierstrass Property
Not all sequences are convergent, even Cauchy sequences may not converge, they converge in
“good” spaces, i.e. complete spaces (cf. next chapter).
Consider the following sequence {1,−1, 1,−1, 1,−1, · · · , 1,−1, 1,−1, · · · }. This sequence does
not converge, but there are some subsequences that converge, such as {1, 1, 1, · · · } or
{−1,−1,−1, · · · }.
The following result is called the Bolzano3-Weierstrass4 theorem for real numbers: Every
bounded sequence of real numbers have a convergent subsequence. Notice that this result re-
mains valid in Rn, n ≥ 1.

Definition 5.3.26. A topological space X has the Bolzano-Weierstrass property, if any
infinite subset A ∈ X has at least one limit point.

Remark 5.3.27. This property is different from the closeness. For example, the interval [0,∞[
is closed in R, but does not have the Bolzano-Weierstrass property. The infinite subset N has no
limit point in [0,∞[.

Theorem 5.3.28. A compact space X satisfies the Bolzano-Weierstrass property.

Proof: Let X be a compact space and let S be a subset of X which has no limit point. We have
to show that S is finite.
Given x ∈ X, we can find an open neighbourhood Ox of x such that

Ox ∩ S =

{
∅ if x 6∈ S
{x} if x ∈ S

since otherwise x should be a limit point of S. By the compactness of X the open cover
{Ox | x ∈ X} has a finite subcover. But each Ox contains at most one point of S and therefore
S must be finite. �

5.3.4 Compactness in Metric Spaces
We already proved that a compact subset of a metric space is closed. Some more results for the
particular case of the metric spaces.

Theorem 5.3.29. Let (X, d) be a metric space. Then, the following properties are equivalent:

1. X is compact.
2Andrey Nikolayevich Tikhonov (October 30, 1906 - October 7, 1993) was a Soviet and Russian mathematician

and geophysicist known for important contributions to topology, functional analysis, mathematical physics, and
ill-posed problems. He was also one of the inventors of the magnetotellurics method in geophysics.

3Bernhard Placidus Johann Nepomuk Bolzano (October 5, 1781 - December 18, 1848), was a Bohemian math-
ematician, logician, philosopher, theologian.

4Karl Theodor Wilhelm Weierstrass (October 31, 1815, February 19, 1897) was a German mathematician who
is often cited as the “father of modern analysis”.
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2. X has the Bolzano-Weierstrass property.

3. X is sequentially compact, i.e. every sequence has a convergent subsequence.

Proof:

• 3) =⇒ 2) Let Y be an infinite subset of X and let {yn}n∈N be a sequence of pairwise
distinct points in Y . The space X is sequentially compact, so the sequence contains a
convergent subsequence and the limit is a point of Y .

• 2) =⇒ 3) Let X be a metric space with the Bolzano-Weierstrass property. Let {xn}n∈N
be a sequence of points of X. If one point occurs infinitely many times in the sequence,
then we have a constant subsequence which converges. If each point occurs finitely many
times, we can choose a subsequence {xnk}k∈N where the points are pairwise distinct. By
assumption, this set has a limit and there is a subsequence which converges to this point.

• 1) =⇒ 2) Suppose that the space X does not satisfy the Bolzano-Weierstrass property, i.e.
there exists an infinite subset Y that has no limit point. So, for each y ∈ Y , there exists a
ball By with center y such that By such that By ∩ Y contains no other point in Y .

• 3) =⇒ 1) Let (Oi, i ∈ I be an open cover of X. Then there exists r > 0 such that for each
x ∈ X, the ball B(x; r) ⊆ Oi for some i ∈ I. If not, choose a sequence (xn)n∈N in X such
that B

(
xn; 1

n

)
* O − i,∀i ∈ I.

The space X is sequentially compact, so the sequence (xn) has a convergent subsequence
(xnk)k∈N. Let x ∈ X be the limit of this subsequence. For some i0, we have x ∈ Oi0 ,
and there is r0 > 0 such that B(x; r0) ⊆ Oi0 . Choose N suvch that d(x, xN ) < 1

2r0 and
1
N < 1

2r0. If y ∈ B
(
xN ; 1

N

)
, then d(x, y) ≤ d(x, xN ) + d(xN , y) < 1

2r0 + 1
2r0 = r0. Hence

y ∈ B(x; r0) ⊆ Oi0 . It follows that B
(
xN ; 1

N

)
⊆ B(x; r0) ⊆ Oi0 which is a contradiction.

• 1) =⇒ 3) Assume there is a sequence (xn)n∈N with no convergent subsequence. Then
no term in the sequence can occur infinitely many times, and we can assume that xi 6=
xj , i 6= j. Each term of the sequence (xn) is an isolated point of the set {xn | n ∈ N}
(otherwise (xn) would have a convergent subsequence). Hence, for each i there is an open
ball B(xi; ri) such that xj /∈ B(xi; ri),∀i 6= j. Denote O0 := X \ {xn | n ∈ N}. Then
O0 is open since its complement consists only of isolated points, and so is closed. Then
{O0}∪{B(xn; rn) | n ∈ N} is an open cover for X. This open cover has no finite subcover,
since any subfamily of these sets would fail to include infinitely many terms for the sequence
(xn)n∈N in its union.

�

Theorem 5.3.30 (Borel-Lebesgue). 56 Let a, b ∈ R such that a < b. Then [a, b] is compact.

Proof: Let V = (Oi) be an open cover of [a, b], and A = {x ∈ R | [a, x] is contained in a
finite subcover of V}. Then a ∈ A, so A 6= ∅.
Let m = supA, then a ≤ m ≤ b, and there exists Oi0 ∈ V containing m.

5Félix Édouard Justin Émile Borel (7 January 1871 - 3 February 1956) was a French mathematician and
politician. He was among the pioneers of measure theory and its application to probability theory. The concept
of a Borel set is named in his honor. One of his books on probability introduced the amusing thought experiment
that entered popular culture under the name infinite monkey theorem or the like. He also published a number of
research papers on game theory.

6Henri Léon Lebesgue (June 28, 1875 - July 26, 1941) was a French mathematician most famous for his theory
of integration, which was a generalization of the seventeenth century concept of integration summing the area
between an axis and the curve of a function defined for that axis.
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If m /∈ A, then ]m− ε,m] ∩A 6= ∅ for all ε > 0.
Let ε > 0 such that ]m − ε,m] ⊂ Oi0 . Let x ∈ A∩]m − ε,m]. Then there exists a finite subset
J ⊂ I such that [a, x] ⊂

⋃
j∈J Oj , so [a,m] ⊂

⋃
j∈J Oj ∪Oi0 , then m ∈ A.

If m ≤ b, there exists ε > 0 such that [m,m+ ε] ⊂ Oi0 which is contradiction since m = supA,
therefore m = b. �

Lemma 5.3.31. Let f : X −! R be a continuous real-valued function on a compact topological
space X. Then f is bounded above and below on X.

Proof: The range f(X) of the function f is compact so it is covered by some finite collection of
open sets. Therefore, f(X) is covered by some finite collection {I1, I2, . . . , Ik} of open intervals
of the form ]−m;m[, where m ∈ N and R is covered by the collection of all intervals of this form.
It follows that f(X) ⊂] −M ;M [, where ] −M ;M [ is the largest of the intervals I1, I2, . . . , Ik .
Thus the function f is bounded above and below on X, as required. �

Remark 5.3.32. In fact, this result can be extended as follows: The metric space (X, d) is
compact iff every continuous function f : X −! R is bounded.

Lemma 5.3.33. Let f : X −! R be a continuous map and suppose X compact. Then there
exist u, v ∈ X such that f(u) ≤ f(x) ≤ f(v) for all x ∈ X.

Proof: Let m = inf{f(x) | x ∈ X} and M = sup{f(x) | x ∈ X}. Then there exists v ∈ X such
that f(v) = M .

If f(x) < M for all x ∈ X, the map x 7−!
1

M − f(x)
could be continuous and not bounded.

Similarly, there exists u ∈ X such that f(u) = m,
(
choose the map x 7−!

1

f(x)−m

)
and the

result follows. �
This result plays an important role in linear programming.

Example 5.3.34. The compactness of X is essential. For example, the function
f : R −! R, x 7−! f(x) = 1

x is continuous, but not bounded on ]0, 1].
The function f(x) = x is continuous and bounded on ]0, 1[, but does not attain its bounds 0 and
1.

Theorem 5.3.35 (Heine-Borel criterion). 7The subset K ⊂ Rn is compact iff K is both closed
and bounded.

Proof: =⇒) Rn is Hausdorff then K is closed (cf. Corollary 5.3.17).
For each m > 0, let B(0;m) be the ball of center 0 and radius m. Then the set of all such balls

for all m > 0 is a cover of Rn. There exist m1 > 0, . . . ,mk > 0 such that K ⊂
k⋃
i=1

B(0;mi) and

K ⊂ B(0;M) where M = maxi=1,...,kmi thus K is bounded.
⇐=) Suppose K bounded and closed subset of Rn. There exists L ≥ 0 such that K ⊂ C =
{(x1, · · · , xn) ∈ Rn | −L ≤ xj ≤ L, j = 1, . . . , n}. The interval [−L,L] is compact and C is the
product of n copies of [−L,L] so C is compact. But K is a closed subset of C so it is compact
(cf lemma 5.3.7.). �

Remark 5.3.36. It is shown that the closed unit ball in a normed linear space is compact iff the
space is finite-dimensional. In an infinite-dimensional normed linear space, the closed unit ball
is never compact.

7Heinrich Eduard Heine (March 15, 1821 - October 21, 1881) was a German mathematician. Heine was born
in Berlin, and became known for results on special functions and in real analysis. In particular, he authored an
important treatise on spherical harmonics and Legendre functions
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Example 5.3.37. The interiors of the cylinder and the Möbius strip are not compact, because
they are not closed subsets of R3.

Example 5.3.38. Heine-Borel theorem is valid in
the Euclidean spaces, but it does not remain valid in
metric spaces.
For example, in R2, let dR be the distance defined
in 2.3.1.e. The circle of center (1, 0) and radius 2
is {(3, 0)}∪

{
(x, y) ∈ R2 | x2 + y2 = 1} \ {(1, 0)

}
. It

is not compact because it does not have the Bolzano-
Weierstrass property (the distance between two points
is at least 2; in fact, the induced topology is discrete.
However, it is bounded and closed. Figure 5.2

Now we introduce a new criterion of compactness in a metric space. Let A be a non-empty
subset of the metric space X. We defined the diameter of A as sup{d(x, y) | x, y ∈ A}. It is
denoted δ(A). It is said that A is bounded if it is no empty and its diameter is finite.

Lemma 5.3.39 (Lebesgue). Let (X, d) be a compact metric space. Let V be an open cover of
X. Then there exists δ > 0 such that each subset of X whose the diameter is < δ is contained
wholly within one of the open sets of the cover V.

Proof: Suppose Lebesgue’s lemma is false, we can find a sequence A1, A2, . . . of subsets of X,
none of which are contained inside a member of the cover V, and whose diameters tend to zero
as we proceed along the sequence. For each n choose a point xn ∈ An. Either the sequence (xi)
contains only finitely many distinct points, in which case some point repeats infinitely often; or
it is infinite, in which case it must have a limit point since X is compact (Bolzano-Weierstrass
property). denote the repeated point, or limit point by p. Let O ∈ V which contains p. Choose
ε > 0 such that B(p; ε) ⊂ O, and choose an integer N large enough so that:

1. the diameter of AN is less than
ε

2
, and

2. xN ∈ B
(
p;
ε

2

)
.

Then d(xN , p) <
ε

2
and d(x, xN ) <

ε

2
for any point x ∈ AN . Therefore d(x, p) < ε if x ∈ AN ,

showing AN ⊂ O. This contradicts our initial choice of the sequence (An). �

In the last part of this section, we shall see the properties of compactness in terms of sequences.

Proposition 5.3.40. Let X be a compact topological space. Then any sequence (xi)i∈N of X
has an adherent point.

Proof: Let An = {xi | i ≥ n}. If
⋂
n

Cl(An) = ∅ then there exist n1, . . . , np such that

p⋂
i

Cl(Ani) = ∅ because X is compact. But there exists n0 such that Cl(An0
) ⊂

p⋂
i

Cl(Ani)

which is not, so xi) has an adherent point. �

Proposition 5.3.41. Let (X, d) be a metric space. Then X is compact iff any sequence has at
least an adherent point.
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Proof:
=⇒) It follows from the previous proposition.
⇐=) Let (Oi)i∈I be an open cover of X and let B(x; r) = {y | d(x, y) < r} be the open ball of
center x and radius r.

1. There exists α > 0 such that B(x;α) ⊂ Oi for some i ∈ I.
If not, for any n = 1, 2, . . ., there exists xn ∈ X such that B

(
xn; 1

n

)
6⊂ Oi for any i ∈ I.

Let x ∈ X be an adherent point of (xi). Then there exists i ∈ I such that x ∈ Oi and
B
(
x; 1

N

)
⊂ Oi for some N . Thus there exists n ≥ 2N such that xn ∈ B

(
x; 1

2N

)
and

B
(
xn; 1

n

)
⊂ B

(
xn; 1

2N

)
⊂ B

(
x; 1

2N + 1
2N

)
⊂ Oi which is not.

2. There exists some finite subcover with balls B(x;α).

If B(x1;α) = X, then there is such finite subcover.

If not, let x2 ∈ X \ B(x1;α). If B(x1;α) ∪ B(x2;α) = X , then there is such finite
subcover.

If not let x3 ∈ X \ (B(x1;α) ∪B(x2;α)) and so on.
If the process does not stop, there exists a sequence (xi) such that
xn 6∈ B(x1;α) ∪ · · · ∪ B(xn−1;α) for any n. But d(xi, xj) ≥ α. Let x be an adherent
point of the sequence (xi). Then there exists n such that xn ∈ B

(
x; 1

2

)
and there

exists n′ > n such that xn′ ∈ B
(
x; 1

2

)
. So d(xn, xn′) < α, which is a contradiction.

�

Proposition 5.3.42. Let (X, d) be a metric space. Then X is compact iff every infinite subset
of X has at least one accumulation point.

Proof: ⇐=) Let V be an open cover of X. We have to find a finite subcover of V.
From Lebesgue lemma, there exists < δ such that all open balls B(x; δ) is contained in an open set
of the cover V.. Let x1 ∈ X. If B(x1; δ) does not cover X, there exists x2 such that d(x1, x2) ≥ δ.
More generally, suppose we have define the points x1, x2, . . . , xp of mutual distances ≥ δ. If the
union of the balls B(xi; δ), i = 1, . . . , p does not cover X, there exists xp+1 such that the distances
d(xp+1, xi) ≥ δ. But the sequence (xi) cannot be infinite which is impossible by hypothesis (the
sequence has at least an accumulation point).
=⇒) It follows from the Bolzano-Weierstrass property. �

Remark 5.3.43. Recall that an accumulation point is either an adherent point or an isolated
point. So the previous proposition could be written as X is compact iff every infinite subset of X
has at least one adherent point.

Corollary 5.3.44. Let (X, d) be a metric space and A ⊂ X. Then Cl(A) is compact iff any
sequence of points of A has a subsequence with a limit point in X.

Proof: =⇒) Let (xn) be some sequence of points of A ⊂ Cl(A). Let (X, d) be a metric space.
This sequence has an adherent point x ∈ Cl(A). Then there exists a subsequence which converges
to x.
⇐=) Let (y1, y2, . . .) be some sequence of points of Cl(A). Some subsequence (xn1

, xn2
, . . .)

converges to some point x ∈ X. Let xi ∈ A such that d(yin , xi) ≤
1

i
. Then x ∈ Cl(A).

Moreover, d(yni , x) ≤ d(yni , xni)+d(xni , x) ≤ 1

ni
+d(xni , x) −! 0 so (yni) converges to x. Then

the sequence (y1, y2, . . .) has an adherent point in Cl(A), hence Cl(A) is compact. �
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Compactness and Uniform Continuity

Let f : X −! Y be a map between two metric spaces. Recall that f is uniformly continuous
if

∀ε > 0,∃δ > 0 such that x, x′ ∈ X and dX(x, x′) < δ =⇒ dY
(
f(x), f(x′)

)
< ε

Remark 5.3.45. Notice that δ is independent of x and x′.

Example 5.3.46. An isometry is uniformly continuous (exercise).

We will give two examples that will help us to have a better understanding of the continuity
and uniform continuity.

Example 5.3.47. 1. The function sin : [0, 2π] −! R, x 7−! sinx is uniformly continuous.
∀ε > 0,∃δ = ε > 0, (that does not depend on x, x′, but only depends on ε).
Using the Mean Value Theorem8, we have

|x− x′| < δ =⇒| sinx− sinx′| ≤
∣∣∣∣d sinx

dx

∣∣∣∣
x=ζ

|x− x′|

= | cos ζ||x− x′|
≤ |x− x′| < δ = ε

2. The map f : R −! R : x 7! x2 is continuous but not uniformly continuous. However, the
restriction f|[a,b] of f to any compact interval [a, b] is uniformly continuous.
Let us show that f is not uniformly continuous.
We must show the existence of an ε > 0 such that for all δ > 0, there exists x, x′ satisfying
|x− x′| < δ, but |x2 − x′2| ≥ ε. Take ε = 1, then, we can find x, x′ such that |x− x′| < δ,
and |x2 − x′2| ≥ 1. Take x = n, x′ = n+ δ/2 where n is sufficiently large, so that

|x− x′| = |n− n+ δ/2| = δ

2
< δ

but
|x2 − x′2| = |x− x′|.|x+ x′| = δ

2

(
2n+

δ

2

)
> 1

and we proved that f is not uniformly continuous.

Theorem 5.3.48. let X and Y be two metric spaces and suppose X compact. Then every
continuous map f : X −! Y is uniformly continuous.

Proof: Let ε > 0. For any x ∈ X, there exists δx > 0 such that x′ ∈ X, d(x, x′) < δx =⇒

d
(
f(x), f(x′)

)
<

1

2
ε. Let Bx = B

(
x;

1

2
δx

)
, which is, for all x ∈ X an open cover of X. X is

compact, so there exists a finite subcover Bx1
, . . . , Bxn . Let δ = inf

(
1

2
δx1

, . . . ,
1

2
δxn

)
> 0. Let

x′, x′′ ∈ X such that d(x′, x′′) < δ. There exists i such that x′ ∈ Bxi . Then d(xi, x
′) <

1

2
δxi

and d(xi, x
′′) ≤ d(xi, x

′) + d(x′, x′′) <
1

2
δxi + δ ≤ 1

2
δxi +

1

2
δxi and d(xi, x

′′) < δxi . Therefore

d
(
f(x′), f(xi)

)
<

1

2
ε, d

(
f(x′′), f(xi)

)
<

1

2
ε, then d

(
f(x′), f(x′′)

)
< ε. �

8If a function f : [a, b] −! R is continuous and differentiable on ]a, b[, then there at least ζ ∈]a, b[ such that
f(x)− f(x′) = f ′(ζ)(x− x′).
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5.3.5 Compact Subsets of Euclidean Spaces
The next result is a characterization of compact subsets of Euclidean spaces given by some
remarkable property of the Cantor set.
Let us recall some properties of the Cantor set (cf. 1.3.9). Let [0, 1] be the unit interval as a
subspace of the space of real numbers with the standard topology. Define the sequence of subsets
F1 ⊃ F2 ⊃ · · ·Fn ⊃ · · · where F1 = [0, 1

3 ] ∪ [ 2
3 , 1], F2 = [0, 1

9 ] ∪ [ 2
9 ,

1
3 ] ∪ [ 2

3 ,
7
9 ] ∪ [ 8

9 , 1], . . ..
The Cantor set is defined by

C =

∞⋂
n=1

Fn

The set G is an intersection of closed sets, so it is a closed subset of [0, 1] that is compact, so C
is compact.

Lemma 5.3.49. Let X be a metric space, A some closed subset, and K some compact subset
of X. Then there exists x0 ∈ K such that d(K,A) = d(x0, A). If A is also compact, then there
exists y0 ∈ A such that d(K,A) = d(x0, y0).

Proof: (to be done) �

Lemma 5.3.50. Every nonempty closed subset A of the Cantor space C is a retract of C.

Proof: (to be done) �

Corollary 5.3.51. For each k ∈ N, there exists a continuous map of the closed unit interval I
onto Ik.

Proof: (to be done) �

Theorem 5.3.52. Let X be a non-empty compact subset of an Euclidean space. Then there
exists some Cantor set C and a continuous surjective map f : C −! X.

Proof: (to be done) �

5.3.6 Exercises
1. Prove that every finite subset of a topological space is compact.

2. In a compact space, any infinite set has an accumulation point.

3. Let X be a Hausdorff space and let (xi)i∈N be a sequence of points of X which converges
w.r.t. the filterbase BN, to one point x. (Why does the assumption “Hausdorff” is neces-
sary?)
Show that {xi | i ∈ N} ∪ {x} is compact.

4. Let X and Y be two topological spaces and let f : X −! Y be a continuous map. Suppose
X compact and Y Hausdorff.
Show that for any closed set A ⊂ X, f(A) is closed in Y .

5. The union of two compact sets is a compact. What about any union of compact?

6. Show that the intersection of any family of compact subsets of a Hausdorff space is compact.

7. Let X = [0,+∞[ and τ = {∅, X, ]a,+∞[, for any a ∈ X}.
Characterize the compact subsets of X.
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8. Let Xi = S1 × {i}, i = 1, 2 be the topological spaces where S1 is the subspace of R2 and
Y = X1 ∪ X2. Define the equivalence relation on Y by (z, 1) ∼ (z, 2) for any z 6= 1, and
Z = Y/ ∼. Denote p : Y −! Z be the canonical projection.
Show that Z is not Hausdorff.
Show that p(Xi) are compact.
Show that p(X1) ∩ p(X2) is not compact.

9. For the metric dR on the real plane, let the circle C of radius 2 with center (1, 0) ∈ R2 (cf.
exercises 2.3.1.1. and 2.8.3.1.).
Show that C is closed and bounded but it is not compact.

10. Let (X, d) be a compact metric space, and f : X −! X a map such that d(f(x), f(y)) <
d(x, y) for any x, y ∈ X,x 6= y.
Show that f has a unique fixed point, i.e. x0 such that x0 = f(x0). (Hint: consider
x 7−! d(x, f(x)).)

11. Prove that the Bolzano-Weierstrass property is topological, i.e. Let X ∼= Y be two topolog-
ical spaces, then X has the Bolzano-Weierstrass property iff Y has the Bolzano-Weierstrass
property.

12. Show that the function f(x) = cos
1

x
is continuous on ]0, 1]. However, f is not uniformly

continuous on ]0; 1]. Notice that the function f(x) = cos
1

x
is uniformly continuous on [a, 1]

for any a such that 0 < a < 1.

13. Let f be a real-valued continuous function defined on a compact set, say a closed and
bounded interval [a, b], then show that f is uniformly continuous on [a, b]. (We require the
proof using ε and δ).

14. Recall that the real projective space Pn(R) can de defined as Sn/ ∼ where the equivalence
relation ∼ is spanned by x ∼ −x. Let πn : Sn −! Pn(R) be the canonical surjection.

(a) Show that for any open set O of Sn, πn(O) is open.
(b) Show that Pn(R) is compact.
(c) Let in : Rn −! Rn+1 be the map given by in(x1, . . . xn) = (x1, . . . xn, 0). Show that

in is compatible with the equivalence relation ∼ and let r : Pn−1(R) −! Pn(R) be
the map obtained from in.

(d) Show that r is injective and identifies Pn−1(R) to a closed subset of Pn(R);

(e) Show that Pn(R) ∼= Bn
∐

ι,πn−1

Pn−1(R) where ι is the inclusion of Sn−1 into Bn.

(f) Let X,Y and Z be three topological spaces.
i. Suppose X and Y are compact and X is Hausdorff, then prove that (X∧Y )∧Z ∼=
X ∧ (Y ∧ Z).

ii. Suppose Y and Z are compact and Z is Hausdorff, then prove that (X ∧Y )∧Z ∼=
X ∧ (Y ∧ Z).

iii. Prove that s(sX) ∼= X ∧ S2 for any base point space X ( where sX denotes the
reduced suspension of X.

15. Let C be the algebraic curve defined by the polynomial P (X,Y ) ∈ C[X,Y ].
Show that C is not a compact subset of C2. (Hint: Use Heine-Borel theorem).
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5.4 Local Compactness
The topological space R is not compact but “locally”, it looks like a compact space.

Definition 5.4.1. A topological space X is said to be locally compact if each point has a
neighbourhood with compact closure.

Example 5.4.2. 1. X compact =⇒ X locally compact.

2. X with the discrete topology =⇒ X locally compact. (For example, the space Z ⊂ R).

3. R is locally compact but it is not compact.

4. Q ⊂ R is neither compact nor locally compact.
We have proved that Q is not compact.
Suppose, for example, that 0 has in Q a compact neighbourhood V ; then V contains a
neighbourhood Q ∩ [−a, a] for some a > 0. But Q ∩ [−a, a] is closed in Q, then it is
compact. But it is not because for any x ∈ [−a, a] ∩ (R \ Q) the sequence of decreasing

closed sets Q∩ [−a, a]∩
[
x− 1

n
, x+

1

n

]
has an empty intersection which is a contradiction

because any finite intersection is not empty.

Proposition 5.4.3. Let X be a locally compact space and let Y be some subset of X where Y
is either open or a closed. Then Y is locally compact.

Proof: Let y ∈ Y . There exists a compact neighbourhood Vy of y in X. Then Vy ∩ Y is a
neighbourhood of y in Y .

If Y is closed, then Vy ∩ Y is closed in Y and therefore compact.

If Y is open, then Vy ∩ Y is compact in Y if Vy is compact.

�

Corollary 5.4.4. Let X be a locally compact space and let x ∈ X. Then Y = X \ {x} is locally
compact.

Proof: Straightforward from the proposition. �

Proposition 5.4.5. Let X1, . . . , Xn be n locally compact spaces. Then
n∏
i=1

Xi is locally compact.

Proof: (exercise) �

Proposition 5.4.6. Let f : X −! Y be a quotient map. If Z is a locally compact Hausdorff
space. Then

f × iZ : X × Z −! Y × Z
is a quotient map.

Proof: (to be done) �

Corollary 5.4.7. If f : X −! Y and g : Z −! T are quotient maps, and if the domain of f
and the range of g are locally compact Hausdorff spaces, then

f × g : X × Z −! Y × T

is a quotient map.

Proof: (to be done) �
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5.4.1 Exercises
1. Let X be a compact space. We know that for any x ∈ X, the subspace X \ {x} is locally

compact. Find some example such that X \ {x} is not compact and some example where
it is compact.

2. Let A and B two locally compact subspaces of a Hausdorff space X.
Show that A ∩B is locally compact.

3. Let A and B two locally compact subspaces of a Hausdorff space X.
Is A ∪B locally compact?

4. Let f : X −! Y be a continuous map where X is locally compact and Y is Hausdorff.
Show that f(X) could be not locally compact. (Hint: Consider a surjection f : Z −! Q).

5.5 Mapping Spaces: Compact-Open Topology
Let X and Y be two topological spaces. Let denote C(X,Y ) be the set of all continuous maps
from X to Y .

Definition 5.5.1. The compact-open topology on C(X,Y ) is generated by the sets

O(K,U) = {f ∈ C(X,Y ) | f(K) ⊂ U}

for K compact of X and U open in Y .

This topology characterizes the nearness of two maps by their nearness on the compact subsets
of X.

Proposition 5.5.2. The set of all O(K,U) as above, are the open sets of a topology on C(X,Y ).

Proof: �

Some useful subspaces of C(X,Y ):

Proposition 5.5.3. • The map j : Y −! C(X,Y ) given by y 7−! cy where cy(x) = y for
any x ∈ X, is a homeomorphism from Y onto a subspace of C(X,Y ).

• Let Y ′ ⊂ Y , then C(X,Y ′) is homeomorphic to the subspace {f ∈ C(X,Y ) | f(X) ⊂ Y ′}.

• C(X,Y ) is Hausdorff iff Y is Hausdorff.

Proof:

• cy ∈ O(K,Y ) iff y ∈ Y , so the injection j is a homeomorphism.

• Let ϕ : C(X,Y ′) −! {f ∈ C(X,Y ) | f(X) ⊂ Y ′} := C′ be the identity map. Let U be an
open set of Y and V = U∩C′. Then ϕ(O(K,V )) = O(K,U)∩C′ and ϕ is a homeomorphism.

• =⇒) It follows from the previous result.
⇐=) Let f 6= g, then for some x0 ∈ X, f(x0) 6= g(x0). Y being Hausdorff, there is open
disjoint neighbourhoods U of f(x0) and U ′ of g(x0). Then O(x0, U) and O(x0, U

′) are
disjoint neighbourhoods of f and g. �
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This compact-open topology has important properties whenever X contains enough compact
subsets. So, we will mainly consider that X is a locally compact space.
LetX,Y and Z be three topological spaces and let f ∈ C(X,Y ), g ∈ C(Y,Z), then g◦f ∈ C(X,Z)
that defines a map C(X,Y )× C(Y, Z) −! C(X,Z).

Proposition 5.5.4. The maps f 7−! g ◦ f and g 7−! g ◦ f are continuous.

Proof: �

So, the map (f, g) 7−! g ◦ f is continuous in each argument separately, but, in general, it is not
continuous in both variables. However,

Proposition 5.5.5. Let X,Z be two Hausdorff spaces and Y be a locally compact space. Then
the map C(X,Y )× C(Y,Z) −! C(X,Z), (f, g) 7−! g ◦ f is continuous.

Proof: �

Corollary 5.5.6. Suppose Y is a locally compact space. Then the map C(Y,Z)×Y −! Z given
by (f, y) 7−! f(y) is continuous.

Proof: The map (f, y) 7−! f(y) is precisely the composition map C(X,Y )×C(Y,Z) −! C(X,Z)
whenever X is a one-point set. Hence, the result follows from the previous one. �

The above map C(Y,Z) × Y −! Z given by (f, y) 7−! f(y) is called the evaluation map of
C(Y,Z).
Given three topological spaces X,Y, Z, a map ϕ : X × Y −! Z can be also regarded as a family
of maps Φx : Y −! Z with X as a parameter space, i.e. Φ : X −! C(Y, Z).

Proposition 5.5.7. 1. If ϕ is continuous, then Φ is continuous.

2. If Φ is continuous and if Y is locally compact, then ϕ is continuous.

Proof: �

5.6 Compactification

5.6.1 Generalities
Let look at an elementary example. The space R, with the standard topology, is no compact.
But it can be embedded in a compact space by at least two distinct methods:

1. Identifying R with ]− 1, 1[⊂ [−1, 1] by the map x 7!
x

(1+ |x |)
.

2. Identifying R with S1 \ {north pole} by stereographic projection.

The first process can be regarded as compactifying R by the addition of two new points, whereas
the second does so by adding only one.

Definition 5.6.1. A compactification of a non compact topological space X is a pair (X̂, h)

consisting of a compact space X̂ and a homeomorphism h from X onto a dense subset of X̂.

There are several ways to compactify some topological spaces as we shown in the previous
example; however, we will introduce the easiest method which is suitable for the locally compact
spaces.
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5.6.2 One-point Compactification

LetX be a compact topological space and let x ∈ X. Then Y = X\{x} is locally compact. Start-
ing from a locally compact space, is it possible to construct a compact space by adding one point?
This process will be called one-point compactification or Alexandroff 9compactification.
More precisely, let (X, τ) be a locally compact topological space and let X̂ = X ∪{ω} be the set
obtained by adding one point ω 6∈ X.
Define the topology τ̂ on X̂ as follows:

O ∈ τ̂ if either O ∈ τ or if O = (X \K) ∪ {ω} where K is a compact set of X

The point ω is called the point at the infinity and it is also denoted ∞.

Theorem 5.6.2. (X̂, τ̂) is a compact topological space and (X, τ) is a subspace of (X̂, τ̂).

Proof:
Show that τ̂ is a topology.

1. ∅ and X̂ ∈ τ̂ is trivial.

2. Let (Oi)i∈I be a family of sets of τ̂ and let O =
⋃
i∈I

Oi. Let I = J ∪ J ′ where

• for i ∈ J, Oi ∈ τ
• for i ∈ J ′, Oi = (X \Ki) ∪ {∞} with Ki compact of X.

(a) If J ′ = ∅ then O ∈ τ .
(b) Suppose J ′ 6= ∅, then ∞ ∈ O and

X̂ \O =
⋂
i∈I

(X̂ \Oi) =

(⋂
i∈J′

Ki

)
∩

(⋂
i∈J

(X \Oi)

)

But

(⋂
i∈J′

Ki

)
is compact in X and

⋂
i∈J

(X \Oi) is closed in X, so X̂ \O is a compact

K of X, and O = (X \K) ∪ {∞}.

3. Let O1 and O2 be two open sets of X̂. Show that O1 ∩O2 ∈ τ̂ .

(a) O1 ∩O2 ∈ τ ′ if O1 and O2 be two open sets of X.

(b) If O1 ∈ τ and O2 = (X \K)∪{∞} with K compact of X, then O1∩O2 = O1∩(X \K)
and X \K ∈ τ so O1 ∩O2 ∈ τ̂ .

(c) If O1 = (X \K1) ∪ {∞} and O2 = (X \K2) ∪ {∞}, with K1 and K2 compact sets in
X, then O1 ∩O2 =

(
X \ (K1 ∪K2)

)
∪ {∞} and K1 ∪K2 is a compact of X.

Show that X̂ is compact.
Let (Oi)i∈I be an open cover of X̂. There exists some i0 ∈ I such that ∞ ∈ Oi0 . Then
Oi0 = (X \K) ∪ {∞} where K is compact in X. Moreover, there exists a finite set J of I such

9Pavel Sergeyevich Alexandrov (sometimes romanized Alexandroff or Alexandrov) (November 16, 1896 - May 7,
1982) was a Soviet Russian mathematician. He wrote about three hundred papers, making important contributions
to set theory and topology.
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that (Oi)i∈J is a finite open cover of K. Then X̂ = Oi0 ∪

(⋃
i∈J

Oi

)
.

Finally, any open set of X is an open set of X̂. The intersections with X of open sets of X̂ are
open sets of X. So the induced topology on X by the topology τ̂ is the topology τ . �

Corollary 5.6.3. Let X be a locally compact space which is not compact. Then (X̂, τ̂) is a
compactification of X.

Proof: It remains to prove that X is dense into X̂. Assume now that X is not compact. Let
O be a neighbourhood of ∞. Since X is not compact, in particular X 6= K, for some compact
subset K, there must be some point(s) x ∈ X \K. That is, the neighbourhood O of ∞ contains
point(s) of X. �

Example 5.6.4. 1. If X =]0, 1] = {x ∈ R | 0 < x ≤ 1}, then X̂ = [0, 1].

2. X = R with the standard topology τ . Then X̂ = X∪{∞} with the topology τ̂ , is homeomor-
phic to the circle S1 (as subspace of the Euclidean real plane R2). (Hint: X̂ ∼=]0, 1[∪{∞}).

3. Let X = R2 be the Euclidean real plane with the topology τ . X̂ = R2 ∪ {∞} with the
topology τ̂ , is homeomorphic to the sphere S2 ⊂ R3. (cf. 4.4.1.2)
S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.

f : R2 ∪ {∞} −! S2

∞ 7−! (0, 0, 1)

(x, y) 7−! p(x,y)

where p(x,y) is the intersection point of the line joining the points (0, 0, 1) and (x, y, 0) with
the sphere S2, (stereographic projection). Then the map f is a homeomorphism (exercise).

4. Let X be a locally compact space which is not compact. Let f : X −! C be a map. Let B
be the filterbase of all the sets X \K where K is compact in X. Then the followings are
equivalent

• f converges to 0 w.r.t. B,
• if f̂ is the map which extends f to X̂ and f̂(∞) = 0, we have lim

x!∞
f̂(x) = 0.

Then we say that f converges to 0 at infinity.

5.6.3 Exercises

1. Suppose that X is a locally compact Hausdorff space. Then prove that X̂ is Hausdorff.

2. Let X be a compact space so it is locally compact. Describe the one-point compactification
of X. (Show that it is the topological sum of X with the one-point set {∞}).

3. If X is an infinite set with the discrete topology, then every neighbourhood of ∞ in X̂
contains all but a finite number of points of X.

4. Give explicit description of the one-point compactification of the set
{(x, y) ∈ R2 | 1 < x2 + y2 < 2}.
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5. Let X,Y be two Hausdorff spaces. Any map f : X −! Y extends to a map
f∗ : X ∪ {∞} −! Y ∪ {∞} by f∗(∞) = ∞. Prove that f∗ is continuous iff f is con-
tinuous and each compact subset of Y has a compact preimage. (Such a map f is called
proper).

6. Characterize the closed sets of X̂ = X ∪ {∞}, the one-point compactification of X.

7. Define R = R ∪ {−∞,+∞} by adjoining two elements to the real line. Let x, y ∈ R and
define the following linear order ≤:

(a) if x, y ∈ R, then x ≤ y with the usual meaning in R.
(b) For any x ∈ R, let x < +∞,−∞ < x.

(c) Assume −∞ < +∞.

Then we get a linear order on R. Let f be the map from
[
−π

2
,
π

2

]
in R as follows :

f(x) = tanx if −π
2
< x <

π

2

f
(π

2

)
= +∞ and f

(
−π

2

)
= −∞

Show that f is bijective, x ≤ y =⇒ f(x) ≤ f(y) for any x, y ∈ R.
Define the topology on R from the induced topology on

[
−π

2
,
π

2

]
via the bijection f .

Deduce that R is compact and show that the induced topology on R is the usual one.

5.7 Paracompactness
Recall that a cover of a space X is a family A = {Ai}i∈I of subsets of X such that X =

⋃
i∈I Ai.

The cover is open if all Ai are open.
A subcover of the cover A is a subset of A that still covers X.
A family {Ai}i∈I of subsets of a space X is called neighbourhood-finite, (shortly written
nbd-finite (also called locally finite) if each point of X has a neighbourhood V such that
V ∩Ai 6= ∅ for at most finitely many i ∈ I.

Example 5.7.1. The cover of the space R by the open intervals ]n − 1, n + 1[, n ∈ Z is locally
finite.

The cover of the space ]− 1,+1[ by the open intervals
]
− 1

n
,+

1

n

[
fails to be locally finite because

of the point 0.

A family {Ai}i∈I of subsets of a space X is called point-finite cover if for any point x ∈ X,
there is at most finitely many i ∈ I such that x ∈ Ai. Notice that a point-finite cover need not
be nbd-finite.
Let {Ai}i∈I and {Bj}j∈J be two covers of the space X. The cover {Ai}i∈I is a refinement of
the cover {Bj}j∈J if for any Ai, there is Bj such that Ai ⊆ Bj .
Recall that a space X is compact iff every open cover of X has a finite open subcover. For a
given open cover of X, let be a finite open refinement of the given cover, then each element of
the refinement is a subset of an element of the cover and we have a finite subcover of X. Hence
we can say that a space X is compact iff every open cover of X has a finite open refinement that
covers X.
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Definition 5.7.2. A space X is paracompact if every open cover has a locally finite open
refinement that covers X.

Remark 5.7.3. It is often required that a paracompact space has to be Hausdorff.

There is a similarity between compactness and paracompactness. For compactness, we need
“subcover”, resp. “finite” and for paracompactness, we need “open refinement”, resp. “locally
finite”. If we change any one of these assumptions in the definition of a paracompact space, the
space becomes compact. For example, we will see that the space R is paracompact. The space
R has the open cover {An}n∈N>0, where An =] −∞, n[. Any subfamily of An’s that covers R
has to be infinite since each An is bounded on the right. So, this open cover of the paracompact
space R does not admit locally finite subcovers even if it has locally finite refinements.

Example 5.7.4. • Every compact space is paracompact, since a finite open cover is trivially
a locally finite open cover.

• A discrete space is paracompact since the open cover of all sets {x}, x ∈ Xis locally finite
and a refinement of any cover of X.

• A metrizable space is paracompact.

• The space Rp, p ∈ N>0, is paracompact (but we already know that it is not compact).
Let {Ai}i∈I be an open cover of Rp. We have to find a locally finite refinement of {Ai}i∈I
that covers Rp. Consider the balls Bn = B(o;n), n ∈ N where B0 = ∅. The closure
Cl(Bn) is compact. Choose finitely many Ai, i ∈ In that cover Cl(Bn) and such that
Ai ∩ (Rp \ Cl(Bn) 6= ∅. Denote A′n the family of such open sets, each is an open subset of
an Ak. So,

⋃
n∈NA′n is an open refinement of {Ai}i∈I .

For any x ∈ Rp, there is a smallest n ∈ N such that x ∈ Cl(Bn), (|x| ≤ n < |x|+ 1) and x
belongs to an element of A′n.
The family {A′n} is locally finite since for given x ∈ Rp, the ball Bn intersects only finitely
many A′m, i.e. those in A′1 ∪ A′2 ∪ · · · ∪ A′n. So, the family {A′m}m∈N is a locally open
refinement of {Ai}i∈I that covers Rp and hence Rp is paracompact.

Properties of Paracompact Spaces

Proposition 5.7.5. A space homeomorphic to a paracompact space is paracompact.

Proof: (Exercise). �

So, paracompactness is a topological property.

Proposition 5.7.6. A closed subset of a paracompact space is paracompact.

Proof: Let A be a closed set of the paracompact space X, and {Ai} an open cover of A. Then
Ai = Oi ∩A, where Oi is an open set of X. Consider the cover of X formed with X \A and the
Ai’s. There exists an open locally finite refinement of the cover of X and the intersections with
A form a locally finite refinement of the given cover of A. �

Remark 5.7.7. A paracompact subspace need not to be closed.
Consider the subspace ]0, 1[⊂ R. ]0, 1[ is homeomorphic to R, so it is paracompact but it is not
closed.

Proposition 5.7.8. The product of a paracompact space and a compact space is paracompact.
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Proof: Let X be a paracompact space and Y a compact space, A an open cover of X × Y . For
any (x, y) ∈ X ×Y , there exists an open neighbourhood V (x, y) of x in X, and a neighbourhood
W (x, y) of y in Y such that V (x, y)×W (x, y) ⊂ A for A ∈ A.
For any x ∈ X, the sets W (x, y) where y ∈ Y form an open cover of Y . Hence, there exists
finitely many points yi, 1 ≤ i ≤ n(x) such that the W (x, yi) form an open cover of Y .

Set U(x) =

n(x)⋂
i=1

V (x, yi). Each open set U(x)×W (x, yi) is contained in a set of the cover A. Let

{Bi}i∈I be an open locally finite refinement of the cover formed by the U(x). For any i ∈ I, let
xi ∈ X such that Bi ⊂ U(xi), and denote Si,k the sets W (xi, yk), 1 ≤ k ≤ n(xi). Then the sets
Bi × Si,k form an open refinement of the cover A.
This cover is locally finite, because for any (x, y), there exists a neighbourhood N of x meeting
finitely man sets Bi. Then the neighbourhood N × Y of (x, y) intersects finetely many sets
Bi × Si,k.. �

Proposition 5.7.9. The sum of paracompact spaces is paracompact.

Proof: Let {Ai}i∈I be an open cover of the space X =
∐
j∈J Xj . The cover {Ai ∩ Bj}i,j is a

refinement of {Ai}i∈I . If for any j ∈ J, {Bi,j}i∈Ij is an open refinement of the cover {Ai∩XJ}i∈I
of Xj , the open cover of the space X formed of the Bij ’s, j ∈ J, i ∈ Ij is a locally finite refinement
of {Ai}i∈I . �

5.8 First and Second-Countable Spaces
Definition 5.8.1. A Hausdorff space is second-countable if it has a countable basis.

Proposition 5.8.2. 1. Second-countability is invariant under continuous open surjections.

2. Every subspace of a second-countable space is second-countable.

3. A product
∏
i∈I

Xi is second-countable iff each Xi is second-countable and ℵ(I) ≤ ℵ0.

Proof:

1. Let {On}n∈Z be a basis for the space X and p : X −! Y be a continuous open surjection.
Then {p(On)}n∈Z is a basis for Y .

2. It’s trivial.

3. Second-countability of
∏
i∈I

Xi implies second-countability of each Xi.

Assume that each Xi is second-countable. The cardinal of a basis for
∏
i∈I

Xi is ℵ0.ℵ(I).

Then, second countability occurs iff ℵ(I) ≤ ℵ0.

�

Definition 5.8.3. A Hausdorff space is Lindelöf if each open cover contains a countable sub-
cover.

Theorem 5.8.4 (K. Morita10). In Lindelöf spaces, regularity and paracompactness are equiva-
lent.

10Kiiti Morita (February 11, 1915 - August 4, 1995) was a Japanese mathematician working in algebra and
topology.
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Proof: The result follows from E. Michael (A note on Paracompact spaces. Proceedings of the
American Mathematical Society. 4 (5): 831 - 838.). �

Lemma 5.8.5. A second-countable Hausdorff and locally compact space admits a countable basis
of open sets with compact closure.

Proof: Let {On}n∈N be a countable basis of open sets in the space X. For any x ∈ X, there
exists an open set Ux containing x with compact closure and some On(x) contains x and is
contained in Ux. The closure of On(x) is a closed subset of the compact Cl(Ux) and so, Cl(On(x))
is also compact. Thus, the On’s with compact closure are a countable basis of open sets with
compact closure. �

Proposition 5.8.6. Any second-countable Hausdorff and locally compact space X is paracom-
pact.

Proof: Let {On}n∈N be a countable basis of open sets in the space X, and {Ui}i∈I an open
cover of X. Let x ∈ X, then x ∈ Ui for some i ∈ I and so, there exist a On(x) such that x ∈ On(x)

and Vn(x) ⊆ Ui. Thus {On(x)} form a countable refinement of {Ui}i∈I .
By the previous lemma, we can assume that all Cl(On) are compact. Therefore, we can consider
countable covers of open sets with compact closures.
Closure commutes with finite unions, replacing Un by ∪j≤nUj , the compactness condition is
preserved and (Un) is an increasing set of open sets with compact closures. For m sufficiently
large, we have Cl(Un) ⊆ Um. Replace, for each n, Un+1 by a Um, we get Cl(Un) ⊆ Un+1 for each
n.
Let K0 = Cl(U0) and for n ≥ 1, let Kn = Cl(Un)\Un−1 = Cl(Un)∩(X \Un−1), so Kn is compact
for every n and for any fixed m, we have Um ∩Kn = ∅ for all n > m.
For n > 1, the open set Wn = Un+1 \ Cl(Un−2) contains Kn, so for each x ∈ Kn, there exists
some Om ⊆ Wn such that x ∈ Om. There are finitely many such Om’s that cover the compact
Kn and {Om} is a locally finite family of open sets in X whose union contains X \ Cl(U0).
Consider finitely many Om’s contained in U1 that cover the compact Cl(U0), we get an open and
locally finite cover of X that refines {Ui}. �

Definition 5.8.7. A space X is first-countable if with each x ∈ X, there is an at most
countable family {On(x)}n∈Z>0

of neighbourhoods such that for each open set V with x ∈ V ,
there is some On(x) ⊂ V , i.e. if X has a countable basis at each point.

Example 5.8.8. Each metric space is first-countable.
Second-countable spaces are always first-countable.

Proposition 5.8.9. 1. A subspace of a first-countable space is first-countable.

2. A countable product of first-countable spaces is first-countable.

3. A subspace of a second-countable space is second-countable.

4. A countable product of second-countable spaces is second-countable.

Proof: We give the proofs of 3 and 4.
3. If B is a countable basis for the space X, then {B ∩ A | B ∈ B} is a countable basis for the
subspace A of X.
4. If Bi is a countable basis for the space Xi, then the family of all products

∏
Ui, where Ui ∈ Bi

for finitely many values i and Xi = Ui for all other values of i, is a countable basis for
∏

Xi.
The proof for 1 and 2 is similar. �
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5.9 Partitions of Unity
Partitions of unity play an important role in topology, geometry and analysis. They allow to
pass from “local to global”.
A partition of unity in topology is a decomposition of the constant function on the topological
space X into a sum of continuous functions∑

i∈I
ηi = 1

and each ηi is concentrated on an “small” open set Oi where the Oi’s form a cover of the space.
In geometry, more is required and, for example, in differentiable geometry, the functions have to
be differentiable.
If the family {Oi}i∈I is locally finite, then so is the family {Cl(Oi)}i∈I and

⋃
i∈I

Cl(Oi) = Cl

(⋃
i∈I

Oi

)
Let f : X −! R be a function where X is a topological space.

Definition 5.9.1. The support of the function f is defined by

supp(f) = Cl({x ∈ X | f(x) 6= 0})

Notice that a point x /∈ supp(f) iff x has a neighbourhood on which f vanishes identically.
We can give the precise definition of partition of unity.

Definition 5.9.2. Let X be a topological space. A family {ηi}i∈I of continuous maps
ηi = X −! R≥0 is called partition of unity on X if

1. The family {supp(ηi)}i∈I form a locally finite cover of X.

2.
∑
i∈I

ηi(x) = 1 for each x ∈ X.

The sum in 2. is well-defined because each x ∈ X lies in the support of at most finitely many ηi.

Definition 5.9.3. A partition of unity {ηi}i∈I is subordinated to an open cover {Ui}i∈I of X
if for each ηi, there is an open set Ui of the cover such that supp(ηi) ⊂ Ui.

Each space has a partition of unity subordinated to the cover by the single set itself.
The space X admits partitions of unity iff for every open cover of X there is a partition of unity
subordinate to the cover.

Proposition 5.9.4. A Hausdorff space admits a partition of unity iff it is paracompact.

The proposition can be written as follows: A Hausdorff space is paracompact iff for each cover,
there is a partition of unity subordinated to the cover.
Proof:

�

5.10 Separability II

5.10.1 Separable Spaces
Definition 5.10.1. A Hausdorff space is separable if it contains a countable dense subset.
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Some Invariance properties

1. The continuous image of a separable space is separable.

2. An open subspace of a separable space is separable.

3. If X is second-countable space, then every subspace is separable.

4. A product of space is separable iff each factor is separable.

5. Let X be a paracompact space. Then if X is separable, it is Lindelöf.

5.10.2 Hausdorff, Regular & Normal spaces

We already defined several kinds of separation. This section completes the study of separation
for topological spaces obtained following the several constructions defined in this chapter.

Hausdorff Spaces

Recall that a space is Hausdorff if each two distinct points have disjoint neighbourhoods.
Some invariance properties of Hausdorff spaces:

1. Hausdorff is invariant under closed bijections.

2. A subspace of a Hausdorff space is Hausdorff.
Let x, y be two distinct points of Y ⊂ X and Ox, Oy be two disjoint neighbourhoods of x
and y respectively. Then Ox ∩Y and Oy ∩Y are disjoint neighbourhoods of x and y in the
subspace Y .

3. A product of spaces is Hausdorff iff each space is Hausdorff.
Let X =

∏
i

Xi a product of Hausdorff spaces and x = (xi), y = (yi) two distinct points

of X. There exist i such that xi 6= yi. Let Ox,i, Oy,i be two disjoint neighbourhoods of xi
and yi respectively. Then p−1

i (Ox,i) and p−1
i (Oy,i) are disjoint open sets in X containing

x and y respectively.

The next result is frequently used.

Proposition 5.10.2. For any pair f, g of continuous mappings from a space X into a Hausdorff
space Y , the set {x ∈ X | f(x) = g(x)} is closed in X.

Proof: It’s equivalent to show that the set A = {x ∈ X | f(x) 6= g(x)} is open in X.
For any x ∈ A, we have f(x) 6= g(x). Hence, there exist two open sets O and O′ in Y such that
f(x) ∈ O, g(x) ∈ O′ and O ∩O′ = ∅, the space Y being Hausdorff. The set f−1(O) ∩ g−1(O′) is
a neighbourhood of x and it is contained in A. So, A is open. �

Regular Spaces

Recall that a space is regular if one-points sets are closed and if each point and each closed set
not containing the point have disjoint neighbourhoods.
Some properties of regular spaces:
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1. A subspace of a regular space is regular.
Let Y be a subspace of the regular space X. Let x ∈ Y and B be a closed subset of
Y such that x /∈ B. We have Cl(B) ∩ Y = B, where Cl(B) is the closure of B in X.
Therefore, x /∈ Cl(B), and by regularity of X, there exist two open sets U, V ⊂ X with
x ∈ U,Cl(B) ⊂ V .

2. A product of spaces is regular iff each space is regular.
Let X =

∏
i

Xi be a product of regular spaces. X is Hausdorff, so the one-point sets are

closed in X. Let x = (xi) ∈ X and let O be a neighbourhood of x in X. Let
∏
i

Oi be a

basis element about x contained in O. For each i, let Vi be a neighbourhood of xi in Xi

such that Cl(Vi) ⊂ Oi. If Oi = XI , take Vi = Xi. Then V =
∏
i

Vi is a neighbourhood of

x in X. Since Cl(V ) =
∏
i

Cl(Vi), it follows that Cl(V ) ⊂
∏
i

Oi ⊂ U , so X is regular.

3. Let X be regular and p : X −! X/ ∼ where ∼ is an equivalence relation. Suppose the
map p closed and open. Then the quotient space X/ ∼ is Hausdorff.

4. Let X be regular and A ⊂ X be closed. Then X/A is Hausdorff.

Normal Spaces

Recall that a space is normal if one-points sets are closed and if each pair of disjoint closed sets
have disjoint neighbourhoods.
Some invariance properties of normal spaces:

1. Normality is invariant under continuous closed surjections.

2. A closed subspace of a normal space is normal.

3. If a product of spaces is normal, then each space is normal.

Proposition 5.10.3. A second-countable regular space is normal.

Proof: Consider the space X that is regular with a countable basis B.
Let C,C ′ be two disjoint closed subsets of the space X. For each x ∈ C ⊂ X \ C ′, let Ox be a
neighbourhood of x such that Cl(Ox) ⊂ X \ C ′, X being regular. Take some Bx ∈ B such that
x ∈ Bx ⊂ Ox. The family of all such Bx covers C. This family of open sets can be indexed,
{On}, whose closure Cl(On) ⊂ X \C ′. Choose a countable family {Vn} of open sets that covers
C ′ such that Cl(Vn) ⊂ X \ C for all n.
Let O′n = On \

⋃n
i=A Cl(Vi) and V ′n = Vn \

⋃n
i=1 Cl(Oi). If n ≤ m, then O′n and V ′m are disjoint.

Similarly, if n ≥ m, then O′n and V ′m are disjoint. Hence O′n and V ′m are disjoint for all n,m.
The family of open sets {O′n} covers C.
The family of open sets {V ′n} covers C ′.
Then O =

⋃
O′n and V =

⋃
V ′n are disjoint and they are neighbourhoods of C and C ′ respectively.

�

Proposition 5.10.4. A compact Hausdorff space is normal.

Corollary 5.10.5. A locally compact Hausdorff space is regular.
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Corollary 5.10.6. A second-countable locally compact Hausdorff space is normal.

The family of normal spaces contains the second-countable regular spaces and the compact
Hausdorff spaces. The next theorem gives a characterization of the normal spaces.

Theorem 5.10.7 (Urysohn11’s lemma). A topological space (X, τ) is normal iff for every
disjoint closed subsets C,C ′ of X, there exists a continuous function f : X −! [0, 1] such that
f(x) = 0 for x ∈ C and f(x) = 1 for x ∈ C ′.

Proof: ⇐=) Let C,C ′ be two disjoint closed subsets of X and a continuous function f : X −!
[0, 1] such that f(x) = 0 for x ∈ C and f(x) = 1 for x ∈ C ′. Then C ⊂ f−1

([
0, 1

2

[)
and

C ′ ⊂ f−1
(]

1
2 , 1
])
. Then f−1

([
0, 1

2

[)
and f−1

(]
1
2 , 1
])

are two disjoint sets that are open since
f is continuous.
=⇒) Let C,C ′ be two disjoint closed subsets of the normal space X. We have to construct
a family of open sets {Oq | q ∈ [0, 1] ∩ Q}, and we denote such a q as qn where n ∈ N with
q0 = 1, q1 = 0, moreover the family of open sets must satisfy the property

q < q′ =⇒ Cl(Oq) ⊆ Oq′ (∗)

Start with O1 = X \ C ′, and using normality of X, let O0 be an open set such that

C ⊆ O0 ⊆ Cl(O0) ⊆ O1

Suppose we defined Oqk , k = 0, 1, 2, . . . n. Denote Qn = {q1, q2, . . . , qn}, r = qn+1.
By inductive hypothesis, we have Cl(Oqi) ⊆ Oqj where qi < r < qj and there is no other elements
of Qn between qi and qj . Then, by mormality of X, we get an open set Or such that

Cl(Oqi) ⊆ Or ⊆ Cl(Or) ⊆ Oqj

We have defined Oq for all q ∈ [0, 1] ∩ Q. Extend to the whole set Q by setting Oq = ∅ for
q ∈ Q<0 and Oq = X if q ∈ Q>0.
For x ∈ X, define Qx = {q ∈ Q | x ∈ Oq}.
Qx is bounded below by 0, if q < 0, Oq = ∅ and so, x /∈ Oq.
Qx 6= ∅, since x ∈ X = Oq for all q > 1.
Hence, for every x ∈ X,Qx contains every rational number larger than 1, no rational number
less than zero, and some rational numbers numbers in between.
So, for all x ∈ X,Qx has a greater lower bound. Define the function f : X −! [0, 1] by
f(x) = inf Qx = inf{q ∈ Q | x ∈ Oq}.

Let A,A′ be two subsets of the topological space X and f : X −! [0, 1] a continuous function
such that f(A) = {0}, f(A′) = {1}. Then the subsets A,A′ are said to be separated by a
continuous function.

• The function f separates C and C ′, i.e. f(x) = 0 for all x ∈ C and f(x) = 1 for all x ∈ C ′.
Let x ∈ C, then x ∈ C ⊆ O0 ⊆ Oq for all q ≥ 0. Therefore Qx = [0,∞[∩Q, and f(x) = 0.
Let x ∈ C ′, then x /∈ O1, and so, x /∈ O1 and x /∈ Oq for all q ≤ 1. Therefore Qx =]1,∞[∩Q,
and f(x) = 1.

11Pavel Samuilovich Urysohn (February 3, 1898 - August 17, 1924) was a Soviet mathematician who is best
known for his contributions in dimension theory, and for developing Urysohn’s Metrization Theorem and Urysohn’s
Lemma, both of which are fundamental results in topology. His name is also commemorated in the terms Urysohn
universal space, Fréchet-Urysohn space, Menger-Urysohn dimension and Urysohn integral equation. He and Pavel
Alexandrov formulated the modern definition of compactness in 1923.
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• Prove that if x ∈ Cl(Oq), then f(x) ≤ q.
Suppose x ∈ Cl(Oq). Then x ∈ Cl(Oq) ⊆ Oq′ for some q′ > q. Therefore ]q,∞[∩Q ⊂ Qx
and inf Qx ≤ q.
Prove that if x /∈ Oq, then f(x) ≥ q.
Suppose x /∈ Oq, then x /∈ Oq′ for any q′ > q, i.e. ]−∞, q] ∩Qx = ∅, hence inf Qx ≥ q.

• Prove that f is continuous.
Let O =]a, b[∈ R, open interval that intersects [0, 1]. Show that f−1(O) is open in X.
Let x ∈ f−1(O). We have to find an open set V of X such that x ∈ V ⊆ f−1(O), i.e.
f(x) ∈ f(V ) ⊆ O. Then f(x) ∈]a, b[, and there exists rational numbers q, q′ such that

a < q < f(x) < q′ < b

Since q < f(x), we have x /∈ Cl(Oq). Since f(x) < q′, we have x ∈ Oq′ . Hence, x ∈
Oq′ \ Cl(Oq). It will be the open set V .
Let us show that f(V ) ⊆]a, b[.
Let y ∈ V , then y ∈ Oq′ ⊆ Cl(Oq′), and f(y) ≤ q′ < b. Since y /∈ Cl(Oq) ⊇ Oq, we have
f(y) ≥ q > a. Therefore

f(y) ∈ [q, q′] ⊆]a, b[

Thus, Uryshon’s lemma is proved.

�
The normal spaces are so-called because they have nice properties. We already mentioned some
of them and the next theorem which follows Uryshon’s lemma is one such properties of normal
spaces.

Theorem 5.10.8 (Tietze). Let X be a normal space and Y a closed subset of X. Then any
continuous function f : Y −! [0, 1] has an extension to X, i.e. there is a continuous function
g : X −! [0, 1] such that g|Y = f .

5.10.3 Tychonoff Spaces

Definition 5.10.9. A space X is completely regular if one-points sets are closed in X and if
for each point x0 and each closed set C not containing x0, there is a continuous map f : X −! I
such that f(x0) = 1 and f(C) = 0.
The map f is said to separate points and closed sets.

By the Uryshon lemma, a normal space is completely regular.
A completely regular space is regular, since given a map f , the sets f−1

([
0, 1

2

[)
and f−1

(]
1
2 , 1
])

are disjoint open sets about C and x0, respectively.
Complete regularity fits between regularity and normality. So, complete regularity is called T3 1

2
.

Remark 5.10.10. The conditions Ti, 1 ≤ i ≤ 3 need only set-theoretic notions and open set
notion. The condition T3 1

2
needs the notion of continuous real-valued maps.

Example 5.10.11. A metric space is completely regular.

Proposition 5.10.12. 1. A subspace of a completely regular space is completely regular.

2. A product of completely regular spaces is completely regular.

Proof:
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1. Let X be a completely regular space, Y ⊂ X,x0 ∈ Y and C a closed set of Y with x0 /∈ A.
Then C = Cl(C)∩Y , Cl(C) is the closure of C in X. Therefore x0 /∈ Cl(C). We can choose
a continuous map f : X −! I such that f(x0) = 1 and f(Cl(C)) = {0}. Hence, f|Y is the
continuous map on Y satisfying the desired conditions.

2. Let X =
∏
α∈A

Xα be a product of completely regular spaces. Let x = (xα) ∈ X and C be a

closed set of X such that x /∈ C. Take a basis element
∏
α

Oα containing x that does not

intersect C. Then Oα = Xα but for finitely many α, say α1, . . . , αn. Choose the continuous
maps fi : Xαi −! I such that fi(xαi) = 1 and fi(X \Oαi) = {0}. Let φi(x) = fi(παi(x)).
Then φi maps X continuouslly into R and vanishes outside π−1

αi (Oαi). The map f such
that f(x) = φ1(x).φ2(x) · · · .φn(x) is the desired continuous map on X.

�

Definition 5.10.13. A completely regular T1-space is said to be a Tychonoff space.

Some properties

• A product of Tychonoff spaces is Tychonoff space.

• A subspace of a Tychonoff space is a Tychonoff space.

• A Tychonoff space is Hausdorff.

5.10.4 Exercises

1. Let X = (R, τ`) and Y = (R, τK) be two topological spaces (cf. Ex. 2.4.1.3). Show that

(a) X is normal, X2 is regular and not normal.

(b) Y is Hausdorff and not regular.

2. A Hausdorff space X is completely regular if for each point x ∈ X and closed set A
not containing x, there is a continuous function ϕ : X −! [0, 1] such that ϕ(x) = 1 and
ϕ(y) = 0 for any y ∈ A.

(a) Show that every subspace of a completely regular space is completely regular.

(b) Show that a product of spaces is completely regular iff each factor is completely
regular.

5.11 Metrization of Topological Spaces

A topological space is called metrizable if its topology is induced by a metric. The metric
spaces have many nice properties, so, given a topological space, it is important to know if the
topology is induced by a metric, i.e. if the space is metrizable.
Under the assumptions that the topological space X is regular and has a countable basis, we
show that X can be embedded in a metric space. This metric space is a “cube”. Therefore, X is
homeomorphic to a subspace of a metric space. A subspace of a metric space is metrizable, and
metrizability is a topological property, so X is metrizable.
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5.11.1 Some properties of Metric Spaces
Proposition 5.11.1. 1. Metrizability is a topological property.

2. A subspace of a metric space is a metric space.

3. (A.H. Stone)12 A metric space is paracompact.

4. A metric space is first-countable.

Proof:

1. Let f : X −! Y be a homeomorphism from the topological space X onto the metric space
Y . Then the map d defined by dX(x, x′) = dY (f(x), f(x′)) is clearly a distance on X.

2. The proof of this item is clear.

3. Let {Os}s∈S be an open cover of the metric space (X, d) where < is a well-ordered relation
on the set S. A well-order (or well-ordering or well-order relation) on a set S is a total
order on S with the property that every non-empty subset of S has a least element in this
ordering.
For each n ∈ N>0, define Ds,n to be the union of all spheres S(x; 2−n) such that:

(a) s is the smallest element of S with x ∈ Os.
(b) x /∈ Ds′,j if j < n.
(c) S(x; 3.2−n) ⊂ Os.

Then {Ds,n} is a locally refinement of {Os} which covers X, hence X is paracompact.
(exercise)

4. The set of open balls centered at x with radius 1/n for integers n > 0 form a countable
local base at x.

�

5.11.2 Embedding in Cubes
Definition 5.11.2. Let A be a set and for each α ∈ A, let (Xα, τα) be a topological space
homeomorphic to the interval [0, 1] with the standard topology. Then the product space

∏
α∈A

Xα

is denoted IA and called a cube.

Suppose card(A) = ℵ0, then a point of IA is a sequence x = (x1, x2, . . . , xn, . . .) where
xi ∈ I = [0, 1]. We define two topologies on the cube IA as follows:

1. The product topology where the topology on I is the standard topology.

2. A metric topology where d(x,y) =

∞∑
i=1

|xi − yi|
2i

.

d is a metric for IA: We have to prove the triangle inequality. Let x,y and z be three
points of IA. Let n > 0. For 1 ≤ i ≤ n, we have |xi − zi| ≤ |xi − yi|+ |yi − zi|, so
n∑
i=1

|xi − zi|
2i

≤
n∑
i=1

|xi − yi|
2i

+

n∑
i=1

|yi − zi|
2i

≤ d(x,y) + d(y, z), and the result follows.

12Arthur Harold Stone (30 September 1916 - 6 August 2000) was a British mathematician born in London, who
worked mostly in topology.
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Proposition 5.11.3. The two topologies on the cube IA are equivalent.

Proof: Let O =
∏
i>0Oi, where Oi = I for i > n, be an element of the basis for the product

topology. and x ∈ O. For each i ≤ n, let ri > 0 such that if t ∈ I and |t− xi| < ri, then t ∈ Oi.
Let r = inf

{r1

2
,
r2

4
, . . . ,

rn
2n

}
. Take y ∈ IA \O, there exists an integer j ≤ n such that yj /∈ Oj .

Then |yj − xj | ≥ rj , so
|yj − xj |

2j
≥ r and we have d(x,y) ≥ r. Hence, B(x, r) ⊆ O and an open

set for the product topology is open for the metric topology.
Conversely, let x ∈ IA and r > 0. There exists a positive integer n such that

∑
i>n

2−i <
r

2
. For

each positive integer i ≤ n, let Oi = I∩
]
xi −

r

2
, xi +

r

2

[
and Oi = I for i > n. Let O =

∏
i>0Oi.

If y ∈ O, d(x,y) =

n∑
i=1

|xi − yi|
2i

+
∑
i>n

|xi − yi|
2i

<

n∑
i=1

( r2 )

2i
+
r

2
< r. Thus O ⊆ B(x, r). �

Proposition 5.11.4. The cube IA is a compact space.

Proof: A product of compact spaces is compact, and the space I is compact. �

Theorem 5.11.5 (Embedding Lemma). Let X and {Yα}α∈A be topological spaces. Let F be
a family of maps X −! Yα, α ∈ A. Then

1. The evaluation map e : X −!
∏
α∈A

Yα, x 7−! (πi(x)) is a continuous map.

2. The evaluation map e is an open map onto its image if separates points and closed sets.

3. The evaluation map e is one-to-one iff separates points.

Proof:
�

Theorem 5.11.6 (Embedding Theorem). A topological space is Tychonoff iff it is homeo-
morphic to a subspace of a cube.

Proof: The unit interval I is a Tychonoff space, and hence a cube, a product of Tychonoff spaces
being Tychonoff space.
A subspace of a Tychonoff space is a Tychonoff space.
If X is a Tychonoff space and let F the family of all continuous maps from X to I, then, using
the embedding lemma, the evaluation map is a homeomorphism form X into the cube IF . �

5.11.3 Metrization
The next lemma gives some properties of metrizable spaces.

Lemma 5.11.7. Let X be a metrizable space and A an open cover of X. Then there is an open
countably locally finite refinement of A.

Proof: Choose a well-order < for the family A. Choose a metric on X. Let n ∈ N>0 and O ∈ A.
Define the subset Sn(O) ⊂ O as

{
x ∈ O | B

(
x, 1

n

)
⊂ O

}
and define

Tn(O) = Sn(O) \
⋃
O′<O

O′
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Figure 5.3

Let O1 < O2 < O3 be three open sets of the cover, then the three sets Tn(O1), Tn(O2) and
Tn(O3) are disjoint. Let x ∈ Tn(O1) and y ∈ T (O2), then d(x, y) ≥ 1

n . To prove it, x ∈ Sn(O1),
so B(x, 1

n ) ⊂ O1. But y ∈ Tn(O2), so, by definition of Tn, y /∈ B
(
x, 1

n

)
.

It remains to modify these sets in order to make them open.
Let En(O) =

{
x ∈ Tn(O) | B

(
x, 1

3n

)
⊂ Tn(O)

}
. If we have O1 < O2 < O3, then the three sets

En(O1), En(O2) and En(O3) are disjoint.
We have d(x, y) ≥ 1

3n whenever x ∈ En(O), y ∈ En(O′) where O < O′.
The family {En(O) | O ∈ A} is a locally finite family of open sets that is a refinement of A.
It is a locally finite family because for any x ∈ X,B

(
x, 1

6n

)
∩ En(O) 6= ∅ for at most one O.

The family {En(O) | O ∈ A, n ∈ N>0} covers X.
Let x ∈ X and choose the first (for <) O ∈ A containing x. The set O is open, so choose n such
that B

(
x, 1

n

)
⊂ O. Hence, x ∈ Sn(O) and x ∈ Tn(O), so x ∈ En(O). �

Urysohn Metrization Theorem

The next theorem gives conditions under which a space is metrizable.

Theorem 5.11.8 (Urysohn Metrization). Every regular space with a countable basis is
metrizable.

Proof: The proof consists to show that the space is homeomorphic to a subspace of a metrizable
space.
Let B = {Bi} be a countable basis for the space X. For each pair (Bm, Bn) ∈ B × B, such that
Cl(Bm) ⊂ Bn, the two closed subsets Cl(Bm) and X \Bn are disjoint, so, by Urysohn’s lemma,
there exists a function fmn : X −! [0, 1] such that fmn(Cl(Bm)) = {1} and fmn(X \Bn) = {0}.
Given x ∈ X, and an arbitrary open neighbourhood Ox of x, one can choose a basis element
Bn containing x and contained in Ox. Using regularity of X, choose Bm so that x ∈ Bm and
Cl(Bm) ⊂ Bn.
Then, there exists a function fmn such that fmn(x) > 0 and fmn(y) = 0 for y /∈ Ox.
The family {fmn} is indexed by a subset of N2, so we can reindexed so that to have the family
{gn}n∈N.
Then we define the map

G : X −! I∞

x 7−! (g1(x), g2(x), . . .)

The map G is continuous because I∞ has the product topology and each component gn is con-
tinuous.
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The map G is injective because given x 6= y, there is an index n such that gn(x) > 0 and
gn(y) = 0. Therefore G(x) 6= G(y).
The map G is a homeomorphism of X onto its image G(X) in I∞. We know that G defines a
continuous bijection of X with G(X). We have to show that for each open set O in X, the set
G(O) is open in G(X). Let z = G(x) ∈ G(X) such that the point x ∈ O. We have to find an
open set contains in G(O) and containing the point z. Choose n ∈ N such that gn(x) > 0 and
gn(X \O) = {0}.
Let V = p−1

n (]0,+∞[) where pn is the nth projection. The set V is an open set of I∞. Let
W = V ∩G(X). By definition of the subspace topology, W is open in G(X).
We have to show that z ∈W ⊂ G(O).
- z ∈W because pn(z) = pn(G(x)) = gn(x) > 0.
- W ⊂ G(O). Let u ∈ W , then u = G(v) for some v ∈ X and pn(u) ∈]0,+∞[. Since
pn(u) = pn(G(v)) = gn(v) and gn vanishes outside O, the point v must belong to O. Then
v = G(u) ∈ G(O).
Thus, G is an embedding of X in I∞. �

This theorem which is a great step toward the metrization question does not give necessary and
sufficient conditions, the countable basis condition is not sufficient.

Nagata-Smirnov Metrization Theorem

The next theorem gives necessary and sufficient conditions for a space to be metrizable.
We know that a countable intersection of open sets need not to be open, such sets occur frequently
in analysis.
A subset of a space is called Gδ-set in X if it is the intersection of a countable family of open
sets in the space.
In a metric space, each closed set is a Gδ-set. Let A ⊂ X be a closed set of the metric space

(X, d), then A =
⋂

n∈N>0

{
x | d(x,A) <

1

n

}
.

Each open subset of a Gδ-set is a Gδ-set.

Lemma 5.11.9. Let X be a regular space with a countable locally finite basis. Then X is normal,
and every closed set in X is a Gδ-set in X.

Proof: (to be done)
�

Theorem 5.11.10 (Nagata13-Smirnov14). A topological space is metrizable iff it is regular and
has a basis that can be decomposed into an at most countable set of locally finite families.

Proof: =⇒).
Assume the topological space X is regular with a countably locally finite basis B. Then X is
normal, and every closed set in X (to be completed)

�

Remark 5.11.11. Let (X, τ) be a metrizable topological space and ∼ an equivalence relation on
X. Then the quotient space (X/ ∼, τ∼) is not necessarily metrizable.

13Masayoshi Nagata; February 9, 1927 - August 27, 2008) was a Japanese mathematician, known for his work
in the field of commutative algebra.

14Vladimir Ivanovich Smirnov) (10 June 1887 - 11 February 1974) was a Russian mathematician who made
significant contributions in both pure and applied mathematics, and also in the history of mathematics.
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Chapter 6
Complete Metric Spaces

The complete metric spaces play a fundamental role in Analysis. They are at the origin of impor-
tant theorems as, for example, fixed-point theorem in topology from which follow the theorem of
local inversion in differential calculus and of Cauchy1-Lipschitz2 in the theory of the differential
equations), the theorem of Baire3 (always in Topology) (and from which follow the theorem of
Banach4-Steinhaus5, . . .).
In this chapter, we will only consider metric spaces.

6.1 Cauchy Sequences

Definition 6.1.1. Let (X, d) be a metric space. The sequence (x1, x2, x3, . . .) of points of X is
said to be a Cauchy sequence, if for every positive real number ε > 0 there is a positive integer
N such that for all natural numbers m,n > N , the distance d(xm, xn) < ε.

Recall that the sequence (xi)i∈N of the topological space X converges to x ∈ X if for any
neighbourhood Vx of x, there exists i0 ∈ N such that for any i > i0, xi ∈ Vx.
In the metric space (X, d), the sequence (xi)i∈N converges to x ∈ X if for any ε > 0, there exists
i0 ∈ N such that for any i > i0, d(xi, x) < ε.
Roughly speaking, the terms of the sequence are getting closer and closer together in a way that
suggests that the sequence ought to have a limit in X. Nevertheless, such a limit does not always
exist within X.

1Augustin-Louis Cauchy (21 August 1789 - 23 May 1857) was a French mathematician who was an early pioneer
of analysis. He started the project of formulating and proving the theorems of infinitesimal calculus in a rigorous
manner. He also gave several important theorems in complex analysis and initiated the study of permutation
groups in abstract algebra. A profound mathematician, Cauchy exercised a great influence over his contemporaries
and successors. His writings cover the entire range of mathematics and mathematical physics.

2Rudolf Otto Sigismund Lipschitz (14 May 1832 - 7 October 1903) was a German mathematician and professor
at the University of Bonn from 1864. Peter Gustav Dirichlet was his teacher. He supervised the early work of
Felix Klein. While Lipschitz gave his name to the Lipschitz continuity condition, he worked in a broad range of
areas. These included number theory, algebras with involution, mathematical analysis, differential geometry and
classical mechanics.

3René-Louis Baire (21 January 1874 - 5 July 1932) was a French mathematician.
4Stefan Banach (March 30, 1892 - August 31, 1945) was a Polish mathematician. Banach was the founder of

modern functional analysis
5Hugo Dionizy Steinhaus (January 14, 1887 - February 25, 1972) was a Polish mathematician and educator.
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Example 6.1.2. Let (]0, 1[, d) be the metric space where d(x, y) = |x − y|. Then the sequence(
1

2
,

1

3
,

1

4
,

1

5
, ...

)
is a Cauchy sequence which does not converge in ]0, 1[.

Remark 6.1.3. The notion of Cauchy sequence depends on the metric used. The same sequence
can be Cauchy for one metric, but not Cauchy for an equivalent metric. For example, let (R, d)
be the metric space where d(x, y) = |x − y|. This metric is equivalent to the metric d′(x, y) =∣∣∣∣ x

1+ | x |
− y

1+ | y |

∣∣∣∣ since the latter is derived from the homeomorphism x 7!
x

1+ | x |
of R onto

]− 1,+1[. The sequence {n | n = 1, 2, . . .} in R is not Cauchy for the metric d and it is Cauchy
for the metric d′.

Proposition 6.1.4. Let (X, d) be a metric space and let (x1, x2, . . .) be a sequence of points of
X. If this sequence has a limit, then it is a Cauchy sequence.

Proof: Suppose the sequence (xi) converges to x. Let ε > 0, there exists an integer N such
that n > N =⇒ d(xn, x) <

ε

2
. Then m,n > N =⇒ d(xm, x) <

ε

2
and d(xn, x) <

ε

2
, then

d(xm, xn) < ε. �

Let (X, d) be a metric space and let (x1, x2, . . .) be a sequence of points of X. Recall that a ∈ X
is an adherent point of the sequence if there exists a subsequence which admits a as a limit.
Moreover, if the sequence has a limit then this limit is an accumulation point but the converse
is false.
For example, the sequence (xn) such that x2n =

1

n
and x2n+1 = n, n ≥ 1, admits 0 as adherent

value but it does not converge.

Proposition 6.1.5. Let (X, d) be a metric space and let (x1, x2, . . .) be a Cauchy sequence of
points of X. Any accumulation point of the sequence (x1, x2, . . .) is a limit point of the sequence.

Proof: Let a be an accumulation point of the sequence (xn). Given ε > 0 there exists n0 such
that for p > n0, q > n0 we have d(xp, xq) <

ε

2
. Moreover, there exists p0 > n0 such that

d(a, xp0) <
ε

2
. From the triangle inequality, d(a, xn) < ε for all n ≥ n0. �

6.2 Complete Metrics and Complete Spaces
Definition 6.2.1. A metric space X is said to be complete (or Cauchy) if every Cauchy
sequence of points in X has a limit that is also in X or alternatively if every Cauchy sequence
in X converges in X.

Intuitively, a space is complete if there are no “points missing” from it (inside or at the
boundary).

Example 6.2.2. 1. The space Q of rational numbers, with the standard metric given by the
absolute value, is not complete. Consider, for instance, the sequence defined by x1 = 1 and

xn+1 =
xn
2

+
1

xn
. This is a Cauchy sequence of rational numbers, but it does not converge

towards any rational limit: Such a limit x of the sequence would have the property that
x2 = 2, but no rational numbers have that property. However, considered as a sequence of
real numbers R it converges towards the irrational number

√
2, the square root of two.
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2. The space R of real numbers and the space C of complex numbers (with the metric given
by the absolute value) are complete.

Remark 6.2.3. Note that completeness is a property of the metric and not of the topology,
meaning that a complete metric space can be homeomorphic to a non-complete one. An example
is given by the space of real numbers, which is complete and homeomorphic to the open interval
]0, 1[, which is not complete.

Proposition 6.2.4. Let (X, d) be a metric space. Assume that there exists ε > 0 such that for
any x ∈ X,Cl

(
B(x; ε)

)
is compact. Then X is complete.

Proof: Let (xn) be a Cauchy sequence in X. For any ε > 0, there exists n such that
d(xp, xq) < ε/2 for any p, q > n. Then for any p > n, xp ∈ Cl

(
B(x; ε)

)
and therefore (xn)

has an accumulation point x0 which is a limit point of (xn). �

Lemma 6.2.5. Let (X, d) be a metric space and let A ⊂ X,x ∈ X. Then the two followings are
equivalent:

1. x ∈ Cl(A).

2. There exists a sequence (x1, x2, . . .) of points of A which converges to x.

Proof: =⇒) Let x ∈ Cl(A). Then, for any integer n ≥ 1, there exists a point xn ∈ A which

belongs to Cl
(
B(x;

1

n
)
)
. Then the sequence (xn) converges to x.

⇐=) Suppose there exists a sequence (x1, x2, . . .) of points of A which converges to x. Then any
neighbourhood of x contains some xn so it intersects A and x ∈ Cl(A). �

Proposition 6.2.6. Let X be a complete metric space and let Y ⊂ X. Then Y is complete iff
Y is closed.

Proof: =⇒) Let y ∈ Cl(Y ). There exists a sequence (y1, y2, . . .) in Y which converges to y.
This is a Cauchy sequence which converges to z in Y which is complete. In X, the sequence (yi)
converges both to y and z so y = z ∈ Y and Cl(Y ) = Y .
⇐=) Let (y1, y2, . . .) be a Cauchy sequence in Y . This is a Cauchy sequence in X so it converges
to x ∈ X. But yi ∈ Y for any i and x ∈ Cl(Y ) = Y so (yi) converges in Y . �

Definition 6.2.7. Let B be a filterbase on the metric space X. B is said to be a Cauchy
filterbase if for any ε > 0, there exists A ∈ B such that its diameter δ(A) < ε.

Proposition 6.2.8. Let B be a Cauchy filterbase on the complete metric space X. Then B has
a limit point.

Proof: For any n ∈ N∗, there exists An ∈ B such that δ(An) <
1

n
. Let xn be an arbitrary

point of An. Then Ap ∩Aq 6= ∅ for any p, q so δ(Ap ∪Aq) <
1

p
+

1

q
and d(xp, xq) <

1

p
+

1

q
. The

sequence (xn) is Cauchy and, X being complete, (xn) has a limit x. Thus for any ε > 0, there
exists n such that d(xn, x) <

ε

2
and δ(An) <

ε

2
. Hence An ⊂ B(x; ε) and B converges to x. �

Proposition 6.2.9. Let X1, . . . , Xn be n complete metric spaces. Then the metric space
X = X1 × · · · ×Xn is complete.

Proof: Let (y1, y2, . . .) be a Cauchy sequence in X. Notice that yi = (yi1, . . . , yin) where
yij ∈ Xj . We have d(ym1, yn1) ≤ d(ym, yn) −! 0 when m,n −! ∞. Then (y11, y21, y31, . . .)
is a Cauchy sequence of X1 so it converges to l1 in X1. Similarly for the other components.
Therefore, the sequence (y1, y2, . . .) converges to the point (l1, l2, . . .) in X. �
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Example 6.2.10. The Euclidean space Rn is complete.

Proposition 6.2.11. Let X be a metric space. The two following conditions are equivalent:

1. X is compact.

2. X is complete and, for all ε > 0, there exists a finite cover of X with balls of radius ε.

Proof: 1 =⇒ 2) : Suppose X compact. Let (x1, x2, . . .) be a Cauchy sequence in X i.e. for any
ε > 0, there exists N0 such that for any i, j ≥ N0, d(xi, xj) ≤

ε

2
.

X compact, then there exists a subsequence (xni) which has a limit x in X, i.e. for any ε > 0,
there exists N1 such that for any ni ≥ N1, d(xni , x) ≤ ε

2
.

Thus the sequence (x1, x2, . . .) has also a limit in X, i.e. let N ≥ sup(N0, N1), then for any
i ≥ N , for any nj ≥ N , d(xi, x) ≤ d(xi, xnj ) + d(xnj , x) ≤ ε

2
+
ε

2
.

Then X is complete.
Let ε > 0, the open balls of radius ε > 0 define a cover of X. But X is compact, there exists a
finite subcover of X.
2 =⇒ 1) : Let (x1, x2, . . .) be a sequence in X. Let V1/2 be a finite cover of X with balls of
radius 1/2. One of these balls, B, contains infinitely many xi. Let (y1

1 , y
1
2 , y

1
3 , . . .) a subsequence

of (x1, x2, . . .) such that all the y1
i ∈ B so the distances of any two points is ≤ 1. Now let

begin again this process replacing
1

2
by

1

4
, by

1

6
,

1

8
, . . . and we get infinitely many finite covers

V1/2n, n ≥ 1 and sequences(
y1

1 , y
1
2 , y

1
3 , . . .

)
(
y2

1 , y
2
2 , y

2
3 , . . .

)
(
y3

1 , y
3
2 , y

3
3 , . . .

)
where each one is a subsequence of the previous one and such that d(yni , y

n
j ) ≤ 1

n
for any i and

j. Let
(
y1

1 , y
2
2 , y

3
3 , . . .

)
be the diagonal sequence . Then d (ymm , y

n
n) ≤ 1

m
for any m ≤ n. So the

sequence (yii) is Cauchy and it has a limit. Then X is compact. �

Notice that every compact metric space is complete but the converse is not true; for example, R
with the standard topology.

6.3 Function Spaces

The function spaces play an important role in modern topology. Recall that we introduced a
metric topology on some function spaces as follows. Let X be a set and (Y, d) a metric space.
Let C(X,Y ; d) be the set of bounded continuous map of X into Y i.e.

C(X,Y ; d) =
{
f ∈ Y X | f continuous and δf(X) <∞

}
where δ is the diameter.
We defined the distance D(f, g) = sup{d (f(x), g(x)) | x ∈ X} for any f, g ∈ C(X,Y ; d).
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Definition 6.3.1. Let X be a set and (Y, d) a metric space and let (fn)n∈N be a sequence of
maps fn : X −! Y . The sequence (fn) is said to be uniformly convergent with limit the map
f : X −! Y , if for every ε > 0, there exists n0 ∈ N such that for all x ∈ X and all n > n0, we
have d (fn(x), f(x)) < ε.

Remark 6.3.2. The sequence (fn) is uniformly convergent to the map f iff for every ε > 0,
there exists n0 ∈ N such that for all n > n0, we have D(fn, f) < ε.

Lemma 6.3.3. Let
(
C(X,Y ; d), D

)
be the metric space. Then

1. Any sequence (fn) converges to f iff fn ! f uniformly on Y .

2. If fn ! f uniformly on Y , then f is continuous and f ∈ C(X,Y ; d).

Proof:

1. It follows from the inequality d
(
f(x), fn(x)

)
≤ D(f, fn).

2. f is continuous at x0: For any ε > 0, there exists n such that d
(
f(x), fn(x)

)
≤ ε for any

x ∈ X. From

d
(
f(x), f(x0)

)
≤ d
(
f(x), fn(x)

)
+ d
(
fn(x), fn(x0)

)
+ d
(
fn(x0), f(x0)

)
≤ 3ε

f ∈ C(X,Y ; d): Note that d
(
f(x), fn(x)

)
≤ 1 for any x ∈ X and sufficiently large n so

that δf(X) ≤ δfn(X) + 2.

�

Example 6.3.4. Let (fn) be the sequence of continuous functions fn : [0, 1] −! R, where
fn(x) = xn. Then limn!∞ fn = f where f is not continuous. (exercise).

Proposition 6.3.5. Let Y be a complete metric space. Then
(
C(X,Y ; d), D

)
is complete.

Proof: Let (fn) be a Cauchy sequence of
(
C(X,Y ; d), D

)
so that for any ε > 0, there exists

N such that for any m,n ≥ N,D(fm, fn) ≤ ε. Since d
(
fm(x), fn(x)

)
≤ D(fm, fn), it follows

that
(
fn(x)

)
is a Cauchy sequence in Y for any x ∈ X and therefore converges to some element

which we denote f(x) ∈ Y . Furthermore, we have fn(x) ∈ B
(
fm(x); ε

)
for any x and any

m,n ≥ N ; consequently, f(x) ∈ Cl(B
(
fm(x); ε

)
which shows that (fn) converges to f uniformly

in Y . Using the previous lemma, f is continuous and belongs to C(X,Y ; d). Since fn ! f , the
proof is complete. �

Example 6.3.6. The metric spaces
(
C([a, b],R), D

)
and

(
C(R,R), D

)
are complete.
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6.4 Extension of Uniformly Continuous Maps
Although the image under a continuous map of a convergent sequence is a convergent sequence,
the image of a Cauchy sequence need not be Cauchy.

Proposition 6.4.1. A uniformly continuous function maps Cauchy sequences into Cauchy se-
quences.

Proof: Let (X, dX) and (Y, dY ) be two metric spaces and let f : X −! Y be a uniformly
continuous map. Let (xn) be a Cauchy sequence in X. Let ε > 0, then there exists δ > 0 such
that for any x, x′ ∈ X, dX(x, x′) < δ =⇒ dY

(
f(x), f(x′)

)
< ε. Thus there exists N ∈ N such

that dX(xm, xn) < δ for any m,n ≥ N . It follows that dY (f(xm), f(xn)) < ε for any m,n ≥ N .
Hence

(
f(xn)

)
is a Cauchy sequences in Y . �

Remark 6.4.2. If f is not uniformly continuous, then the result may not be true. For example,
let f :]0,∞[−! R;x 7! 1/x. f is continuous and the sequence (1/n) is Cauchy. But the sequence(
f(1/n)

)
= (n) is not a Cauchy sequence.

Theorem 6.4.3. Let A be a dense subset of a metric space (X, dX). Let f be a uniformly con-
tinuous map from A into a complete metric space (Y, dY ). Then there exists a unique uniformly
continuous map g from X into Y which extends f , i.e. g|A = f .

Proof:

1. Define a map g : X −! Y
For each x ∈ X = Cl(A), there exists a sequence (xn) in A which converges to x. Then
(xn) is a Cauchy sequence in X. Thus

(
f(xn)

)
is a Cauchy sequence in Y which converges.

Set g(x) = lim
n!∞

f(xn) for any x ∈ X.

2. The map g does not depend upon the sequence (xn).
Let (xn) and (x′n) be two sequence in A which converge to x ∈ X. Then the sequence
(x1, x

′
1, x2, x

′
2, . . . , xn, x

′
n, . . .) must converge to x. Hence the sequence

(
f(x1), f(x′1), . . . ,

. . . , f(xn), f(x′n), . . .
)

converges to some point y ∈ Y . Since
(
f(x1), f(x2), . . .

)
and(

f(x′1), f(x′2), . . .
)
are the subsequences, they must also converge to y. Hence y = g(x)

does not depend on the choice of the sequences.

3. The map g is an extension of f .
Let a ∈ A and let an = a for each n. Then (an) is a sequence in A which converges to a.
Hence g(a) = lim

n!∞
f(an) = f(a). This shows that g is an extension of f .

4. The map g is uniformly continuous on X.
Let ε > 0. Then there exists α > 0 such that for any a, b ∈ A, dX(a, b) ≤ α =⇒
dY
(
f(a), f(b)

)
≤ ε

3
. Let x, x′ ∈ X be such that dX(x, x′) ≤ α. Then there exist se-

quences (xn) and (x′n) in A which converge to x and x′. Hence
(
f(xn)

)
converges to g(x)

and
(
f(x′n)

)
converges to g(x′). Choose N such that

dX(xN , x) ≤ α− dX(x, x′)

2
, dX(x′N , x

′) ≤ α− dX(x, x′)

2

dY (
(
f(xN ), g(x)

)
≤ ε

3
and dY (

(
f(x′N ), g(x′)

)
≤ ε

3
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Then dX(xN , x
′
N ) ≤ dX(xN , x) + dX(x, y) + dX(x′, x′N ) ≤ α which implies that

dY
(
f(xN ), f(x′N )

)
≤ ε, be the uniform continuity of f on A. Hence,

dY
(
g(x), d(x′)

)
≤ dY

(
g(x), f(xN )

)
+ dY

(
f(xN ), f(x′N )

)
+ dY

(
f(x′N ), d(x′)

)
≤ 3

ε

3
= ε

This shows that g is uniformly continuous on X.

5. The map g is unique.
Let g and h be two uniformly continuous maps on X which extends f . Let x ∈ X.
Then there is a sequence (xn) in A which converges to x. By continuity of g and h,
g(x) = lim

n!∞
g(xn) = lim

n!∞
h(xn) = h(x). Hence g = h.

�

Corollary 6.4.4. Let (x, dX) and (Y, dY ) be two complete metric spaces, and let A ⊂ X and
B ⊂ Y be dense. Then each uniform isomorphism h : A −! B has an extension H : X −! Y
that is also a uniform isomorphism. Furthermore, if h is an isometry, then so also H.

Proof: Since h is uniformly continuous, it is extendable to a uniformly continuous H : X −! Y .
Since g = h−1 is also uniformly continuous, it has also a uniformly extension G : Y −! X;
Because G ◦ H|A = IdA and A is dense in X, we have that G ◦ H = IdX and , similarly, that
H ◦ G = IdY . It follows that H is a uniform isomorphism. The second part is immediate from
the manner in which the extension H is defined. �

6.5 Completion of a Metric Space
In this section, a non complete metric space will be embedded in a complete metric space. The
first example is the embedding of the rational numbers Q into the space of real numbers R which
is complete.

Definition 6.5.1. A completion of a non complete metric space (X, d) is a pair consisting of
a complete metric space (X̂, d̂) and an isometry f from X into X̂ such that f(X) is dense in X̂.

Theorem 6.5.2. Every non complete metric space has a completion.

Proof: Let (X, d) be a non complete metric space. Let SX be the set of all Cauchy sequences
on X. Define the relation ∼ on SX by

(xn) ∼ (yn)⇐⇒ lim
n!∞

d(xn, yn) = 0

Notice that the both sequences have limits in X is irrelevant.
It is easy to check that this is an equivalence relation on SX (exercise).
Denote [(xn)] be the equivalence class of the Cauchy sequence (xn), so it is an element of the
quotient set SX/ ∼. Denote X̂ = SX/ ∼ which is the space we are looking for.

1. Define a metric d̂ on X̂.

(a) First, define a function ∆ : SX × SX −! R by ∆
(
(xn), (yn)

)
= lim

n!∞
d(xn, yn). Let

prove that ∆ is a well-defined function, i.e. the limit exists.
By the triangular inequality

d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn)
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We have d(xn, yn) − d(xm, ym) ≤ d(xn, ym) + d(ym, yn) and reversing the roles of m
and n we find that

|d(xn, yn)− d(xm, ym) | ≤ d(xn, ym) + d(ym, yn)

Since both sequences are Cauchy, for any ε > 0, we can choose N such that for any
m,n ≥ N, d(xn, x) ≤ ε/2

(
choose N1 for the sequence (xn) and N2 for the sequence

(yn) and N = sup(N1, N2). Thus we have |d(xn, yn)−d(xm, ym) |≤ ε for allm,n ≥ N ,
i.e. the sequence (αn) where αn = d(xn, yn) is a Cauchy sequence in R which is com-
plete and the limit exists.

(b) Second, construct a metric d̂ on X̂ from the map ∆.
Define

d̂
(
[(xn)], [(yn)]

)
= ∆

(
(xn), (yn)

)
In order to show that d̂ is well-defined, we have to prove that it does not depend
on the choice of the Cauchy sequence in its equivalence class, i.e. ∆

(
(xn), (yn)

)
=

∆
(
(x′n), (y′n)

)
where (xn) ∼ (x′n) and (yn) ∼ (y′n).

∆
(
(xn), (yn)

)
≤ ∆

(
(xn), (x′n)

)
+ ∆

(
(x′n), (y′n)

)
+ ∆

(
(y′n), (yn)

)
= ∆

(
(x′n), (y′n)

)
since ∆

(
(xn), (x′n)

)
= ∆

(
(yn), (y′n)

)
= 0 so that ∆

(
(xn), (yn)

)
≤ ∆

(
(x′n), (y′n)

)
. A

similar argument also shows that ∆
(
(x′n), (y′n)

)
≤ ∆

(
(xn), (yn)

)
so that ∆

(
(xn), (yn)

)
=

∆
(
(x′n), (y′n)

)
= d̂

(
[(xn)], [(yn)]

)
. It remains to check that d̂ is a metric which is

straightforward.

2. There exists an isometry f from (X, d) into (X̂, d̂).
For each x ∈ X, let x̂ = [(xn)] ∈ X̂ such that xn = x for all n, i.e. the equivalence
class of the constant (Cauchy) sequence (x, x, x, . . .) = (x). Define f : X −! X̂ by
f(x) = [(x)] = x̂. Then for any x, y ∈ X,

d̂
(
f(x), f(y)

)
= d̂(x̂, ŷ) = lim

n!∞
d(x, y) = d(x, y)

Hence f is an isometry from X into X̂.

3. f(X) is dense in X̂.
Let [(xn)] ∈ X̂ and let ε > 0. Since (xn) is a Cauchy sequence, there exists N such that
for any m,n ≥ N, d(xm, xn) <

ε

2
. Let y = xN . Then ŷ ∈ f(X) and

d̂([(xn)], ŷ) = lim
n!∞

d(xn, y) = lim
n!∞

d(xn, xN ) ≤ ε

2
< ε

Thus ŷ ∈ B([(xn)]; ε)∩ f(X) where B([(xn)]; ε) is the open ball of center [(xn)] and radius
ε in (X̂, d̂). Hence, f(X) is dense in X̂.

4. (X̂, d̂) is complete.
We have to consider Cauchy sequences in X̂ i.e.

(
[(xn)]k

)
. For each k, choose a represen-

tative (xnk) which is a Cauchy sequence of X. Notice that xnk ∈ X for any n, k. To say
that

(
[(xn)]k

)
is a Cauchy sequence means that for any ε > 0, there exists N such that

∆
(
(xnk1), (xnk2)

)
≤ ε for any k1, k2 ≥ N i.e. lim

n!∞
d(xnk1 , xnk2) ≤ ε for any k1, k2 ≥ N .
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Recall that for each k, the sequence (x1k, x2k, . . .) (w.r.t. the first index) is Cauchy in X.

Thus there exists Nk such that d(xpk, xqk) <
1

k
for any p, q ≥ Nk.

For each k, choose some xpk with p ≥ Nk and let the constant sequence (xpk, xpk, . . . ),
denoted ck, which is clearly Cauchy. For simplicity, denote yk = xpk the chosen element, so

ck = (yk, yk, . . .). Let ĉk be its equivalence class in X̂. Then for each k, ∆
(
(xnk), ck

)
≤ 1

k
,

and hence d̂
(
[(xnk)], ĉk

)
≤ 1

k
.

Consider the sequence ĉk and find its limit. Let c = (y1, y2, y3, . . .) which is a Cauchy
sequence of X. To prove this,

d(ym, yn) ≤ d(ym, xjm) + d(xjm, xjn) + d(xjn, yn)

There exists N ′ such that d(ym, xjm) ≤ ε

3
for any m ≥ N ′.

There exists N ′′ such that d(xjm, xjn) ≤ ε

3
for any m,n ≥ N ′′.

There exists N ′′′ such that d(xjn, yn) ≤ ε

3
for any n ≥ N ′′′.

So d(ym, yn) ≤ ε.
∆
(
(yk), c

)
= limj!∞ d(yk, yj) = 0 because c = (y1, y2, y3, . . .) is a Cauchy sequence.

Finally the Cauchy sequence
(
[(xn)]k

)
converges to ĉ ∈ X̂ because d̂

(
[(xnk)], ĉ

)
≤ 1

k
for

any k. �

Example 6.5.3. Starting from the set N of natural integers, using algebraic processes, we can
construct the set Z of integers, then the set Q of rational numbers. The completion of the metric
space (Q, d) where d(x, y) =|x− y |, is the space of real numbers R.

Corollary 6.5.4. Let (X, d) and (X ′, d′) be two non complete metric spaces, and g : X −! X ′

a uniformly continuous map. Then there exists a unique uniformly continuous map ĝ : X̂ −! X̂ ′

such that the following diagram is commutative.

X
g //

f
��

X ′

f ′

��
X̂

ĝ // X̂ ′

Proof: The map f ′ ◦ g ◦ f−1 : f(X) −! X̂ ′ is uniformly continuous; since the space X̂ ′ is
complete and f(X) is dense in X̂, then ĝ : X̂ −! X̂ ′ is uniformly continuous and the diagram is
commutative. �

6.6 Baire’s Theorem for Complete Metric Spaces
We have sufficient condition for topological completeness, the following proposition is a necessary
condition which is one of the most important and useful.

Definition 6.6.1. A space X is a Baire space if the intersection of each countable family of
open dense sets is dense.

Theorem 6.6.2. Any topological complete space is a Baire space.
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Proof: Let (On) be a countable family of dense open sets and let A =
⋂
n

On. To show that A

is everywhere dense it suffices to prove that for every non-empty open ball B in the space X we
have B ∩

⋂
n

On 6= ∅ Let (rn) be a sequence of strictly positive numbers converging to 0. If B is

a non-empty open ball and O1 an every where dense open set, B ∩ O1 is non-empty and open,
and so contains a non-empty open ball. Choose this ball B1 to have radius less than r1. Since
B1 is non-empty and open, B1 ∩O2 is also non-empty and open and contains a non-empty open
ball B2 whose radius we may suppose to be less than r2. In this way we construct, step by step,
a countable family of non-empty open balls Bn with radii less than rn, respectively, and such
that Bn ⊂ Bn−1 ∩ On−1 which implies thatBn ⊂ Bn−1 and

⋂
n

Bn ⊂ B ∩
⋂
n

On. It remains to

prove that the Bn have a non-empty intersection. Let xn denote the center of Bn. For integers
p such that 0 ≤ p ≤ q, xq ∈ Bq so that d(xp, xq) < rp. Since lim rp = 0, d(xp, xq) tends to 0,
and so the sequence (xn) is a Cauchy sequence. Since X is complete (xn) converges to a point
x ∈ X. It follows that for an arbitrary integer p, and q tending to infinity:

d(xp, x) ≤ d(xp, xq) + d(xq, x) < rp + d(xq, x)

and so, since lim
q!∞

d(xq, x) = 0, it follows that d(xp, x) ≤ rp for all p and so x ∈ Bp for all p, or

x ∈
⋂
p

Bp. The intersection of the balls Bn is thus non-empty and so B ∩
⋂
n

On 6= ∅. �

Remark 6.6.3. The completeness assumption is necessary in this theorem as the following
example illustrates. Let X = Q. Write Q = {rn | n ∈ N} and let On = Q \ {rn} for each n ∈ N.

Then On is open and dense in Q for each n, but
∞⋂
n=1

On = ∅.

Corollary 6.6.4. If a complete metric space is a union of countable many closed sets, then at
least one of the closed sets has nonempty interior.

Proof: Let X be a complete metric space. Assume that X =

∞⋃
n=1

Cn, where each Cn is closed.

For each n ∈ N, let On = X \ Cn. Then
∞⋂
n=1

On = ∅. By Baire’s theorem, there exists an open

set On which is not dense in X. Thus, Cl(On) 6= X. But Int(Cn) = X \ Cl(On), and hence Cn
has nonempty interior. �

6.7 Fixed-Point Theorem for Complete Spaces
Definition 6.7.1. Let f : X −! X be a map of the space X to itself. A point x0 is called a
fixed point for f if f(x0) = x0.

Not every map has a fixed point; for example, the map f : R −! R given by x 7! x+ 1 has
no fixed point.

Proposition 6.7.2. Let (X, d) be a complete metric space, let f : X −! X be a map. Assume
there exists λ ∈ [0, 1[ such that d

(
f(x), f(x′)

)
≤ λ d(x, x′) for all x, x′ ∈ X. Such a map is called

contractive. Then

146



6.7. FIXED-POINT THEOREM FOR COMPLETE SPACES

1. There exists only one point a ∈ X such that f(a) = a.

2. For all x0 ∈ X, the sequence of points, xn+1 = f(xn), n ≥ 0 converges towards a.

Proof: 1. Let a, b ∈ X such that a = f(a) and b = f(b). Then d(a, b) = d
(
f(a), f(b)

)
≤ λ d(a, b).

So (1− λ) d(a, b) ≤ 0. But 1− λ > 0, then d(a, b) ≤ 0 and finally d(a, b) = 0 thus a = b.
2. Let x0 ∈ X, define x1 = f(x0), x2 = f(x1), . . .. Let us show that d(xn, xn+1 ≤ λn d(x0, x1).
It is clear for n = 0. Suppose it is true for n. We deduce that for any integers n, p ≥ 0

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)

≤ (λn + λn+1 + · · ·+ λn+p−1) d(x0, x1)

≤ λn

1− λ
d(x0, x1)

But 0 ≤ λ < 1 then λn −! 0 for n −! ∞. Therefore (xn) is a Cauchy sequence which
converges to the point a. Moreover d(xn, a) −! 0 so d

(
f(xn), f(a)

)
−! 0 which means

d(xn+1, f(a)
)
−! 0. So the sequence (xn) also converges to f(a) and finally a = f(a). �

The most interesting applications of this proposition arise when the space X is a function space.
We can use it to prove a number of existence and uniqueness theorems for differential and integral
equations.

Proposition 6.7.3 (Picard). 6 Given a function f(x, y) defined and continuous on a plane
domain G containing the point (x0, y0) suppose f satisfies a Lipschitz condition of the form
|f(x, y) − f(x, y′)| ≤ M |y − y′| in the variable y. Then there is an interval |x − x0| ≤ α in

which the differential equation
dy

dx
= f(x, y) has a unique solution y = ϕ(x) satisfying the initial

condition ϕ(x0) = y0

By an n-dimensional domain we mean an open connected set in Euclidean n-space.
Proof: Together the differential equation and the initial condition are equivalent to the integral

equation ϕ(x) = y0 +

∫ x

x0

f(t, ϕ(t))dt. By the continuity of f , we have |f(x, y)| ≤ K in some

domain G′ ⊂ G (in fact f is bounded on G′ ⊂ G) containing the point (x0, y0). Choose α > 0
such that

1. (x, y) ∈ G′ if |x− x0| ≤ α, |y − y0| ≤ Kα

2. Mα < 1

and let C be the space of continuous functions ϕ defined on the interval |x − x0| ≤ α and such
that

∣∣ϕ(x)− y0

∣∣ ≤ Kα, equipped with the metric d(ϕ,ϕ′) = maxx |ϕ(x)−ϕ′(x)|. The space C is
complete, since it is closed subspace of the space of all continuous functions on [x0 − α, x0 + α].
Consider the mapping ψ = Aϕ defined by the integral equation

ψ(x) = y0 +

∫ x

x0

f(t, ϕ(t))dt, (|x− x0| ≤ α)

Clearly A is a contraction mapping carrying C into itself. In fact, if ϕ ∈ C, |x − x0| ≤ α then∣∣ψ(x) − y0

∣∣ =
∣∣ ∫ x

x0

f(t, ϕ(t))dt
∣∣ ≤ ∫ x

x0

∣∣f(t, ϕ(t))
∣∣dt ≤ K

∣∣x − x0

∣∣ ≤ Kα and hence ψ = Aϕ also

6Charles Émile Picard (24 July 1856 - 11 December 1941) was a French mathematician.
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belongs to C. Moreover,∣∣ψ(x)− ψ′(x)
∣∣ ≤ ∫ x

x0

∣∣f(t, ϕ(t))− f(t, ϕ′(t))
∣∣dt ≤Mα

∣∣ϕ(t)− ϕ′(t)
∣∣

and hence d(ψ,ψ′) ≤ Mα.d(ψ,ψ′) after maximizing with respect to x. But Mα < 1, so that A
is a contraction mapping. It follows that the equation ϕ = Aϕ, i.e. the integral equation has a
unique solution in the space C. �

6.7.1 Exercises

1. Let X =

{
1,

1

2
,

1

3
, . . . ,

1

n
, . . .

}
⊂ R and define the metric d on X as follows:

d(x, y) = |x− y|.

(a) Show that (X, d) is not complete.

(b) Let xn = 1/n. Show that d(xn, x) ≥ 1

n2 + n
for any x ∈ X with x 6= xn.

(c) Show that the only Cauchy sequences (yn) in X are

• either yn = xp for some p and all n ≥ N .
• or for any N , there exists M such that for each n ≥M we have yn = xp for some
p ≥ N .

2. Let X be a metric space and let f : X −! X be a map such that for any x, y ∈ X,x 6= y
then d

(
f(x), f(y)

)
< d(x, y). Suppose X complete. Find out an example such that f has

no fixed point. (Hint: Consider the function f : [0,+∞[−! [0,+∞[;x 7!
√
x2 + 1).

3. Let X be a metric space and let f : X −! X be a map. Assume there exists λ ∈ [0, 1[
such that d

(
f(x), f(x′)

)
≤ λ d(x, x′) for all x, x′ ∈ X. Suppose X is not complete.

Find out an example such that f has no fixed point. (Hint: Consider the function
f :]0, 1] −!]0, 1];x 7!

x

2
).

4. Let (X, d) be a metric space. The distance between a point x ∈ X and a subset A ⊂ X is
d(x,A) = infy∈A(x, y). Let H(X) be the set of non-empty compact subspaces of X and let
A,B be two elements of H(X). The Hausdorff metric on H(X) is defined by

h(A,B) = sup

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
(a) Show that h is a metric on H(X) and (H(X), h) is complete.

(b) If X is compact, show that H(X) is compact.

(c) Show that the topology of H(X) depends only on the topology of X and not on the
metric d.
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Chapter 7
Homotopy

7.1 Fundamental Group

7.1.1 Introduction

The title of this chapter is “continuous deformation”. What is it? Let consider some examples:
Is it possible to have a continuous deformation

• from Id : R2 −! R2 into the constant map to 0?

• from Id : S1 −! S1 into the map S1 −! S1, x 7−! −x, where S1 = {x ∈ C | |x| = 1}?

• from Id : S1 −! S1 into the constant map S1 −! S1, x 7−! 1?

• from some continuous map f : X −! R to some other continuous map g : X −! R?

A continuous deformation exists, means that there is a family of continuous maps depending of
a parameter t such that for t = 0, the map is the first map and for t = 1, the map is the second
map. In other words, if the maps are from X to Y , there is a continuous map F : X× [0, 1] −! Y
such that F (−, 0) is the first map, F (−, 1) the second, and each F (−, t) is continuous.

7.1.2 Homotopy of Paths

Let consider the two complex maps z 7−! z and z 7−!
1

z
. Let C be a loop, i.e. a closed curve

in C and the integrals
∫
C
zdz and

∫
C

dz

z
. The first integral is always = 0 because the curve C

can be “shrunk” to a point in the domain of analyticity of the map, and the second integral can
be 6= 0 because some curves in the domain of analyticity of the map, C∗, for example, the unit
circle, cannot be “shrunk” to a point.
These two integrals show that the topologies of the domains of analyticity of the two maps are
different.
More precisely, let γi : [0, 1] −! X, i = 1, 2, be two continuous maps, called paths, to a topo-
logical space X such that γ1(0) = γ2(0) = x0 and γ1(1) = γ2(1) = x1.
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The two paths are homotopic with the end points held fixed
if there exists a continuous map F : [0, 1] × [0, 1] −! X such
that:

• F (s, 0) = γ1(s) for any s ∈ [0, 1].

• F (s, 1) = γ2(s) for any s ∈ [0, 1].

• F (0, t) = x0 for any t ∈ [0, 1].

• F (1, t) = x1 for any t ∈ [0, 1].

Figure 7.1
The second variable t is the variable of the deformation.

Definition 7.1.1. The map F is called homotopy from γ1 to γ2.

More generally, let f, g : Y −! X be two continuous maps. The map f is said to be homotopic
to the map g if there exists a continuous map F : Y × [0, 1] −! X such that F (y, 0) = f(y) and
F (y, 1) = g(y) for any y ∈ Y .
If the map g is a constant map, then the map f is said to be null-homotopic.
Let Y = [0, 1], we will be interested by some kinds of paths γ such that γ(0) = x0 = x1 = γ(1).
Such paths are called loops based at x0.
For example, there exists a homotopy from any closed curve in the plane R2 to the constant map
at the origin (and end) point of the curve, but there does not exist any homotopy from the unit
circle with the origin point (1, 0) to the constant map in the punctered plane R2 \ {(0, 0)}.
The homotopy relation between loops based at a given point, is an equivalence relation.

• Reflexivity : γ is homotopic to γ; take F (s, t) = γ(s).

• Symmetry : γ1 is homotopic to γ2; so there exists a homotopy F (s, t). Take G(s, t) =
F (s, 1− t) and we have γ2 is homotopic to γ1.

• Transitivity : γ1 is homotopic to γ2 where F is the homotopy, and γ2 is homotopic to γ3

where G is the homotopy. Then

H(s, t) =

{
F (s, 2t) 0 ≤ t ≤ 1

2
G(s, 2t− 1) 1

2 ≤ t ≤ 1
is a homotopy from γ1 to γ3.

We denote [γ] the homotopy class of the loop γ.
Let γi, i = 1, 2 be two loops based at x0 ∈ X. The product γ1.γ2 is the loop given by

γ1.γ2(s) =

{
γ1(2s) 0 ≤ s ≤ 1

2
γ2(2s− 1) 1

2 ≤ s ≤ 1

Notice that the product of loops is not the composition of the maps that has no meaning, a path
being a map [0, 1] −! X. It traverses first γ1 and then γ2.
The set of loops based at a given point is not a group under the product, for example, the product
is not associative.

Definition 7.1.2. The set of homotopy classes of loops based at x0 in the space X, is denoted
π1(X;x0).
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Remark 7.1.3. A loop in X can be viewed as a continuous map (S1; ∗) −! (X;x0). Then
π1(X;x0) is the set of homotopy classes of such continuous maps.

Lemma 7.1.4. Homotopy behaves well w.r.t. composition of maps

Proof: If the loops based at x0, γ1 and γ2, are homotopic, then γ1.γ and γ2.γ are homotopic as
well as γ.γ1 and γ.γ2. �

Theorem 7.1.5. The set π1(X;x0) is a group for the product [γ1].[γ2] = [γ1.γ2].
The neutral element is the class of the constant loop at x0.
The inverse of the class [γ] is the class of the loop γ−1 defined by

γ−1(s) = γ(1− s)

Proof: Associativity
Let γi, i = 1, 2, 3 be three loops based at x0, we show that [γ1.γ2].[γ3] = [γ1].[γ2.γ3].
The map F defined by

F (s, t) =


γ1

(
4s

t+ 1

)
0 ≤ s ≤ 1

4 (t+ 1)

γ2(4s− t− 1) 1
4 (t+ 1) ≤ s ≤ 1

4 (t+ 2)

γ3

(
4s− t− 2

2− t

)
1
4 (t+ 2) ≤ s ≤ 1

is a homotopy from the loop (γ1.γ2).γ3 to the loop γ1.(γ2.γ3) based at the same point x0.

Explanation of the formulas above: γ1

(
4s

t+ 1

)
, for 0 ≤ s ≤ 1

4
(t+ 1).

The condition 0 ≤ s ≤ 1

4
(t+1) can be written as 0 ≤ 4s

t+ 1
≤ 1. The other formulas are obtained

similarly.

Figure 7.2

Neutral element
The map G defined by

G(s, t) =

 γ

(
2s

t+ 1

)
0 ≤ s ≤ 1

2 (t+ 1)

x0
1
2 (t+ 1) ≤ s ≤ 1
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Inverse elements
Let γ be a loop based at the point x0. Then, the map H defined by

H(s, t) =

 γ(2s) 0 ≤ 2s ≤ t
γ(t) t ≤ 2s ≤ 2− t
γ−1(2s− 1) 2− t ≤ 2s ≤ 2

is a homotopy from γ.γ−1 to the constant x0. �

Definition 7.1.6. The group π1(X;x0) is called the fundamental group of X based at the
point x0.

Remark 7.1.7. The group π1(X;x0) is not abelian, in general. However, in some cases, it is
abelian.

Is there any relation between π1(X;x0) and π1(X;x1), where x0 and x1 are two points of X?

Proposition 7.1.8. Let α be a path from x0 to x1. The map [γ] 7−! [α−1.γ.α] is an isomorphism
of the group π1(X;x0) onto the group π1(X;x1).

Proof: (exercise) �

Corollary 7.1.9. If the space X is pathwise connected, the group π1(X;x0) is independent of
the point x0 and it is called the fundamental group of the space X.

Remark 7.1.10. The fundamental group is the first group of a series of higher homotopy groups,
which explains the notation π1. These higher homotopy groups will be defined by replacing the
circle S1 by the spheres Sn, n ∈ N∗.

Definition 7.1.11. A topological space is simply connected if it is pathwise connected and its
fundamental group is trivial.

7.1.3 The Functor π1
Let X be a topological space, the category of paths in X, denoted P(X) has the points of X as
objects and the morphisms from x to y are the homotopy classes of path from x to y. Let σ be
a path from x to y, γ a path from y to z, then [σ.γ] = [σ].[γ].

Let define the category of pointed topological spaces as the category with the objects (X;x0)
where x0 ∈ X and the morphisms from (X;x0) to (Y ; y0) are the maps f : X −! Y such that
f(x0) = y0.
Let denote γ ∼ γ′ when the two paths γ and γ′ are homotopic. The compose γ 7−! f ◦ γ where
γ is a path joining x to x′ in X and fγ is a path joining f(x) to f(x′) in Y satisfies the following
properties

• If γ ∼ γ′, then f ◦ γ ∼ f ◦ γ′ (homotopy of paths).

• f ◦ γγ′ ∼ (f ◦ γ)(f ◦ γ′) (compose of paths).

We define the functor π1 from the category of pointed topological spaces T op∗ to the category
of groups Gps which sends the pointed space (X;x) to the group π1(X;x) and the morphism
f : (X;x) −! (Y ; y) to the homomorphism of groups

f∗ : π1(X;x) −−−! π1(Y ; y)

[γ] 7−−−! [f ◦ γ] = f∗([γ])
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The continuous map f induces a homomorphism such that f∗([γγ′]) = f∗([γ])f∗([γ
′]).

The identity map Id : (X;x) −! (X;x) induces the identity homomorphism Id∗.
For a continuous map g : (Y ; y) −! (Z; z), we have (g ◦ f)∗ = g∗ ◦ f∗.

Example 7.1.12. Let D2 be the unit disk. There is no continuous map r : D2 −! S1 such that
r(p) = p for all p ∈ S1.
Suppose there exists such map r. The point 1 will be the base point for both spaces D2 and S1.
Let ι : S1 −! D2 be the inclusion map, thus r ◦ ι = IdS1 . Then r∗ ◦ ι∗ = Idπ(S1 . So, let a be a
generator of π1(S1) , then r∗ ◦ ι∗(a) = a.
We have ι∗(a) ∈ π1(D2) and D2 is contractible, so π1(D2) is trivial, so ι∗(a) = e and r∗ ◦ ι∗(a) =
e 6= a and we get a contradiction.

7.1.4 Deformation Retracts

If A ⊂ X is a retract of X, i.e. there is a continuous map r : X −! A such that r(x) = x for all
x ∈ A, then the induced homomorphism π1(A) −! π1(X) is injective. We have r ◦ ι = IdA, i.e.
r is a left inverse of the inclusion. For example, any point x ∈ X is a retract of X.
A ⊂ X is a retract of X iff for any space Y , any continuous map A −! Y extends to a continuous
map X −! Y .
A more interesting notion is the following.

Definition 7.1.13. A deformation retract of a space X onto a subspace A is a family of
maps ft : X −! X, 0 ≤ t ≤ 1, such that f0 = Id, f1(X) = A and f|A = Id for all t. The family
X × [0, 1] −! X, (x, t) 7−! ft(x) is continuous.

A deformation retract of X onto A is a homotopy from the identity map of X to a retraction r
of X onto A.

Proposition 7.1.14. If A is a deformation retract of X, then the inclusion ι : A ↪! X induces
an isomorphism from π1(A) onto π1(X) for any based point in A.

Proof: From r ◦ ι = IdA, we have r∗ ◦ ιA = Idπ1(A) and ι ◦ r is homotopic to IdX , so
ι∗ ◦ r∗ = Idπ1(X). �

Example 7.1.15. The punctured plane R2 \{(0, 0)} retracts onto the unit circle. The retraction
is given in polar coordinates by F ((es, θ), t) = (e(1−t)s, θ).

7.1.5 Examples

The definition of the fundamental group of a topological space is easy to understand, but its
calculation could be difficult even for simple topological spaces.

Fundamental Group of the Real Line

Let 0 be the base point of R, then π1(R; 0) = 0.
Define F (s, t) = (1− t)s. Then F is a homotopy from the identity to the constant map at 0. Let
γ be a loop at 0, define G(s, t) = F (γ(s), t). The homotopy G shows that γ is homotopic to the
constant map at 0.
The fundamental group of a disk is trivial. More generally, the fundamental group of any convex
subset in Rn is trivial.
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Fundamental Group of the Product Space

Let X,Y and Z be three topological spaces. Then the map f = (fX , fY ) : Z −! X × Y is
continuous iff the maps fX and fY are continuous.
Let Z = [0, 1], then f, fX , fY are paths in X × Y,X, Y with the following properties:

• If f, g are two paths with f(0) = g(0), f(1) = g(1), then f and g are homotopic iff fX , gX
are homotopic , and fY , gY are homotopic.

• Let h = f.g, If f, g are two paths with f(0) = g(0), f(1) = g(1), then hX = fX .gX and
hY = fY .gY .

We assume that X and Y are two path-connected spaces.

Theorem 7.1.16. The groups π1(X;x)× π1(Y ; y) and π1(X × Y ; (x, y)) are isomorphic.

Proof: Let (pX)∗ : π1(X × Y ; (x, y)) −! π1(X;x) and (pY )∗ : π1(X × Y ; (x, y)) −! π1(Y ; y)
denote the homomorphisms of groups induced by pX and pY .
From the first property above, a loop f in X × Y based at (x, y) has two loops associated to it,
pX ◦ f and pY ◦ f , which are continuous and properly based. Similarly, a homotopy of the loop
translates to homotopies of the loops in X and Y . Thus there is a map

(pX)∗ × (pY )∗ : π1(X × Y ; (x, y)) −! π1(X;x)× π1(Y ; y)

which is a bijection and a homomorphism of groups from the second property above, so it is an
isomorphism. �

Fundamental Group of a Topological Group

The fundamental group of a topological space is not necessarily abelian, but when the topological
space is a topological group, then it is abelian.
Let (G, τ) be a group G with a topology τ such that the group law ∗ is continuous as well as the
inverse, i.e. the following maps are continuous

G×G −−−! G G −−−! G

(g, h) 7−−−! g ∗ h g 7−−−! g−1

Consider the map

F : [0, 1]× [0, 1] −−−! R2

(s, t) 7−−−!
{

((1− t)2s+ st, st) if 0 ≤ s ≤ 1
2

(st+ 1− t, (1− t)(2s− 1) + st) if 1
2 ≤ s ≤ 1

The following figure shows the images of the horizontal segments t = t0 for 0 ≤ t0 ≤ 1.

Figure 7.3
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The set {F (s, 0), 0 ≤ s ≤ 1} is the union of the segment [(0, 0), (1, 0) with the segment [(1, 0), (1, 1)].
The set {F (s, 1), 0 ≤ s ≤ 1} is the diagonal of the square, and the set {F (s, t0), 0 ≤ s ≤ 1} is

the union of the segment
[
(0, 0),

(
1− t0

2
,
t0
2

)]
with the segment

[(
1− t0

2
,
t0
2

)
, (1, 1)

]
.

Proposition 7.1.17. Let ((G, ∗), τ) be a topological group and e its neutral element. Then the
fundamental group π1(G; e) is an abelian group.

Proof: Let γ and γ′ be two paths in G, based at the neutral element e. Consider the map

M : [0, 1]× [0, 1] −−−! G

(u, v) 7−−−! γ(u) ∗ γ′(v)

Consider the loop M|{(u,u)} = {γ(u) ∗ γ′(u) | 0 ≤ u ≤ 1}, restriction to the diagonal.
There exists a homotopy H from the loop γ.γ′ to the loop M|{(u,u)}:

H(s,−) =


H(s, 0) =

{
γ(2s) ∗ γ′(0) = γ(2s) for 0 ≤ s ≤ 1

2
γ(0) ∗ γ′(2s− 1) = γ′(2s− 1) for 1

2 ≤ s ≤ 1

H(s, t0) =

{
γ((1− t0)2s+ st0) ∗ γ′(st0) for 0 ≤ s ≤ 1

2
γ(st0 + 1− t0) ∗ γ′((1− t0)(2s− 1) + st0) for 1

2 ≤ s ≤ 1
H(s, 1) = γ(s) ∗ γ′(s) for 0 ≤ s ≤ 1.

It is clear that H is a continuous map. Moreover, H(−, 0) = γ.γ′ and H(−, 1) = γ(−) ∗ γ′(−),
so it is a homotopy.
Similarly, we have a homotopy from the loop γ′.γ to the loop M|{(u,u)}. Then, the loops γ.γ′
and γ′.γ are homotopic and the fundamental group π1(G; e) is abelian. �

7.2 Homotopy Equivalence of Spaces

7.2.1 Homotopy of Maps
Recall the definition of the homotopy of maps given in 7.1.2. Two continuous maps f, g : X −! Y
are said to be homotopic if there exists a continuous map

F : X × [0, 1] −! Y

(x, t) 7−! F (x, t)

such that
{
F (x, 0) = f(x)
F (x, 1) = g(x)

for any x ∈ X.

Exercice 7.2.1. Let f and g be two maps of a singleton to the space X where

1. X = R2 \ (Q× {0}). Are these two maps homotopic?

2. X = R3 \ {(x, y, z) | z = 0}. Are these two maps homotopic?

3. X = R3 \ {(x, y, z) | y = 0, z = 0}. Are these two maps homotopic?

7.2.2 Homotopy Equivalence
Two topological spaces X and Y are of the same homotopy type if there exist continuous
maps, called homotopy equivalences, f : X −! Y, g : Y −! X, such that g ◦ f and f ◦ g are
homotopic to the identity maps.

Proposition 7.2.2. Let X and Y be two pathwise connected spaces. If they are homotopically
equivalent, then their fundamental groups are isomorphic.
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7.2.3 Homotopy & Homeomorphism
Proposition 7.2.3. Homeomorphic spaces are homotopy equivalent.

Proof: Let f : X −! Y be a homeomorphism, then f ◦ f−1 = IdY and f−1 ◦ f = IdX . �
The converse is not true, as the following example shows.

Example 7.2.4. • The space R is homotopic to a point but they are not homeomorphic.

• R2 is not homeomorphic to Rn for n 6= 2.
Suppose R2 = Rn. If n = 1, then R2 \ {p} is path-connected but Rn \ {q} is not path-
connected when n = 1. When n > 2, the same argument does not work, but consider
π1(Rn \ {p}) . We can prove that Rn \ {p} is homotopy equivalent to Sn−1 × R. We have
π1(Rn \ {p}) = Z for n = 2 and trivial for n > 2.

As a consequence of this result, there are fewer invariants and many homeomorphism invariants
are not homotopy invariants. For example, compactness, connectedness after removing one or
more points.

Definition 7.2.5. A topological space is said to be contractible if it is homotopically equivalent
to a point, or equivalently, if its identity map is null-homotopic.

Example 7.2.6. 1. Rn and Cn are contractible.

2. Any convex subset of Rn is contractible.

3. Any star-shaped set is contractible.

Proposition 7.2.7. A contractible space is simply connected.

Proof: A contractible space has the homotopy type of a point, so its fundamental group is
isomorphic to the fundamental group of a space which is a singleton and such a space has only
one loop, the constant loop. Then the fundamental group is trivial. �

Notice that the converse is not true. For example, the sphere S2 is simply connected but it is
not contractible.

7.3 The Seifert-Van Kampen Theorem
The Seifert1-Van Kampen2 theorem gives a method to compute the fundamental group of a space
knowing the fundamental groups of some subspaces.
Let X be a topological space, U, V two open sets such that U ∩ V 6= ∅, U ∪ V = X, and suppose
all spaces are arcwise connected and they have the same based point x0 which will be omitted
for simplicity. Then the inclusion maps in the left diagram induce the following commutative
right diagram:

U ∩ V �
� //� _

��

� t

''

V � _

��
U
� � // X

π1(U ∩ V )
ιV //

ιU

��

p

''

π1(V )

pV

��
π1(U)

pU
// π1(X)

1Herbert Karl Johannes Seifert (May 27, 1907, Bernstadt - October 1, 1996, Heidelberg), was a German
mathematician known for his work in topology.

2Egbert Rudolf van Kampen (28 May 1908, Berchem, Belgium - 11 February 1942, Baltimore, Maryland) was
a mathematician. He made important contributions to topology, especially to the study of fundamental groups.
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Theorem 7.3.1. Let G be a group and p : π1(U ∩ V ) −! G, pU : π1(U) −! G and
pV : π1(V ) −! G three homomorphisms such that the following diagram is commutative:

π1(U ∩ V )
ιV //

ιV

��

p

''

π1(V )

pV

��
π1(U)

pU // G

Then, there is a unique homomorphism π1(X) −! G such that the following diagram is commu-
tative:

π1(U ∩ V ) //

�� ''

p

++

π1(V )

jV

�� pV

��

π1(U)
jU

//

pU
--

π1(X)

%%
G

i.e. π1(X) is a fibered sum, i.e. an amalgamated free product π1(X) ∼= π1(U) ∗π1(U∩V ) π1(V ).

Proof: The amalgamated free product is given by the diagram:

π1(U ∩ V ) //

�� ))

π1(V )

��
π1(U) // π1(U) ∗π1(U∩V ) π1(V )

and for any group G such that the diagram is commutative

π1(U ∩ V ) //

�� ''

π1(V )

pV

��
π1(U)

pU
// G

In particular for the group G = π1(X), the following diagram is commutative

π1(U ∩ V ) //

�� ''

π1(V )

��
π1(U) // π1(X)

and there exists a unique homomorphism Φ making commutative the diagram

π1(U ∩ V ) //

�� ))

,,

π1(V )

��

��

π1(U) //

..

π1(U) ∗π1(U∩V ) π1(V )

Φ

))
π1(X)
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Let G be any group. We have to construct a unique homomorphism ψ : π1(X) −! G such
that the following diagrams commute. Let G = π1(U) ∗π1(U∩V ) π1(V ), then we get Φ is an
isomorphism and Φ = ψ−1.

π1(U ∩ V ) //

�� %%

++

π1(V )

��

��

π1(U) //

--

π1(X)
ψ

""
G

π1(U ∩ V ) //

�� %%

**

π1(V )

��

��

π1(U) //

,,

π1(X)

Φ−1

((
π1(U) ∗π1(U∩V ) π1(V )

The point x0 ∈ U ∩ V is the base point and γ : [0, 1] −! X = U ∪ V be a loop based at x0.
Then γ is homotopic to a product of loops based at x0 contained in either U or V .
By the compactness of [0, 1], there is 0 = s0 < s1 < · · · < sm−1 < sm = 1 such that γ([si, si+1]) ⊂
U or V and γ(si) ∈ U ∩V for any i = 0, . . . ,m− 1. Let γi denote the path from γ(si) to γ(si+1)
where γi(s) = γ(si + s(si+1 − si)), 0 ≤ s ≤ 1. Then γ = γ0.γ1. · · · .γm−1 (concatenation of
paths).
U ∩ V is path-connected, so there are paths σi, i = 1, . . . ,m, contained in U ∩ V from x0 to
γ(si−1). The loop

(γ0.σ
−1
1 ).(σ1.γ1.σ

−1
2 ). · · · .(σm−1.γm−1.σ

−1
m ).(σm.γm) : [0, 1] −! X

is homotopic to γ, with for any i, [σi−1.γi−1.σ
−1
i ] ∈ π1(U) or π1(V ). Then

[γ] = [γ0.σ
−1
1 ][σ1.γ1.σ

−1
2 ]. · · · .[σm−1.γm−1.σ

−1
m ][σm.γm] ∈ φ(π1(U) ∗ π1(V )) ⊂ π1(X)

Figure 7.4

We define the map ψ : π1(X) −! G by

ψ([γ]) := p∗([γ0σ
−1
1 ])p∗([σ1.γ1.σ

−1
2 ]) · · · p∗([σm−1.γm−1.σ

−1
m ])p∗([σm.γm])

where p∗ means either pU or pV depending on whether [σi−1.γi−1.σ
−1
i ], i = 1, . . . ,m belongs to

π1(U) or π1(V ). However, ψ is a well defined map if we have the following properties:

160



7.3. THE SEIFERT-VAN KAMPEN THEOREM

1. if σi−1.γi−1.σ
−1
i lies in both U and V , we can choose either pU or pV . But σi−1.γi−1.σ

−1
i

lies in π1(U ∩ V ) and the commutativity of the following diagram shows that we get the
same result because pU ◦ ιU = pV ◦ ιV = p.

π1(U ∩ V )
ιV //

ιU

��

p

''

π1(V )

pV

��
π1(U)

pU
// G

2. The construction of ψ must not depend on the choice of the points γ(si) that we will denote
xi.
Suppose we add another point y along γi defining the two new paths γ′i−1 and γ′i. Let σy
be a path in U ∩ V joining y and x0. Suppose that the loop σi−1.γi.σ

−1
i is contained in U ,

then the same is true for the two new loops σi−1.γ
′
i.σ
−1
y and σy.γ′i.σ

−1
i . We have

p∗([σi−1.γ
′
i−1.σ

−1
y ]).p∗([σy.γ

′
i.σ
−1
i ]) = p∗([σi−1.γ

′
i−1.σ

−1
y .σy.γ

′
i.σ
−1
i ]) = p∗([σi−1.γi.σ

−1
i ])

where p∗ : π1(W ) −! π1(X) and W is either U or V or U ∩ V .
So, adding the point y does not change the value of ψ([γ]) and it will be the same if we
add finitely many points. Thus, ψ is independent of our choice of subdivision and hence,
it is well-defined.

3. We have to check that if γ′ is another loop homotopic to γ, then ψ([γ]) = ψ([γ′]).
Let H : [0, 1]× [0, 1] −! X be the homotopy realizing γ ∼ γ′, i.e.

H(s, 0) = γ(s)

H(s, 1) = γ′(s)

H(0, t) = H(1, t) = x0

By the Lebesgue Covering lemma3, we can subdivide [0, 1] × [0, 1] into rectangles Rij =
[si−1, si]× [tj−1, tj ] where 0 = s0 < s1 < · · · < sn = 1 and 0 = t0 < t1 < · · · < tm = 1 such
that either H(Rij) ⊂ U or H(Rij) ⊂ V .

3Let (X, d) be a compact metric space and an open cover of X. Then, there exists a number δ > 0 such that
every subset of X having a diameter < δ, is contained in some element of the cover
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Let γi, (resp. γ′i), denote the restriction of γ (resp. γ′) to [si−1, si]. The path γi need not
be loop. Let xi = γi(si) for any i, then we defined the paths σi in either U or V and the
loop σi−1γiσi.
Consider the effect of adding the rectangle Rij .
Let hij be the path associated with the horizontal edge from (si−1, tj) to (si, tj), i.e.
hij(s) = H((1− s)si−1 + ssi, tj) , and vij the path associated with the vertical edge from
(si, tj−1) to (si, tj), i.e. vij(t) = H(si, (1 − t)tj−1 + ttj). Then in either U or V ,we have
hij−1vij homotopic to vi−1jhij , which gives the equalities [hij−1][vij ] = [vi−1j ][hij ]in either
π1(U) or π1(V ).
Hence, the value of ψ is unchanged.

4. We have to prove that ψ([γγ′]) = ψ([γ)][ψ(γ′]).
Suppose that the subdivision 0 = s0 < s1 < · · · < sn = 1 is such that for some k, sk = 1

2 .
Then, for i = 0, . . . , k,

s ∈ [0, 1] 7−! u = (1− s)2si−1 + s.2si ∈ [2si−1, 2si] 7−! γ(u) := γi(s)

and for i = k + 1, . . . , n,

s ∈ [0, 1] 7−! u = (1− s)(2si−1 − 1) + s(2si − 1) ∈ [2si−1 − 1, 2si − 1] 7−! γ′(u) := γ′i−k(s)

Using this subdivision for the domain of γγ′, we have

ψ([γγ′]) = ψ([γ1]) · · ·ψ([γk]).ψ([γ′1]) · · ·ψ([γ′n−k])

Using the subdivision 2s0, 2s1, . . . , 2sk for the path γ we have

ψ([γ]) = ψ([γ1]) · · ·ψ([γk])

and using the subdivision 2sk − 1, 2sk+1 − 1, . . . , 2sn − 1 for the path γ′ we have

ψ([γ′]) = ψ([γ′1]) · · ·ψ([γ′n−k])

Thus, we have ψ([γγ′]) = ψ([γ]).ψ([γ′]).

�

Remark 7.3.2. The condition “U∩V is path-connected” is neceesary. For example, take X = S1

and U = S1 \ {1}, V = S1 \ {−1}. Both U and V are contractible, so their images in π1(X) are
the trivial group. If the theorem applied, we conclude that π1(S1) is trivial, which is not because
the space U ∩ V = S1 \ {−1, 1} is disconnected..
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Corollary 7.3.3. If U ∩ V is simply connected, then π1(X) is the free product π1(U) ∗ π1(V )
w.r.t. to the homomorphisms induced by the inclusion maps.

Proof: As π1(U ∩ V ) = 0, U ∩ V being simply connected, the amalgamated free product is a
free product, i.e. π1(U) ∗π1(U∩V ) π1(V ) = π1(U) ∗ π1(V ). �

Corollary 7.3.4. If V is simply connected„ and N is the normal subgroup generated by the
image of π1(U ∩ V )in π1(U), then π1(X) ∼= π1(U)/N .

Example 7.3.5. 1. The sphere Sn, n ≥ 2 is simply connected.
Let U = Sn \ {n}, V = Sn \ {s} where n is the north pole and s the south pole. Thne U and
V are contractible, so simply connected, U ∩ V is path-connected, and we have the result.
Notice that if n = 1, then U ∩ V fails to be path-connected and the Seifert-Van Kampen
theorem does not apply.

2. Consider the space X formed by the number 8, i.e. two circles intersecting in one point.
Then π1(X) = Z ∗ Z. Notice that it is a free group with two generators.

3. Consider the space X formed by three circles intersecting in one point. Then π1(X) =
Z ∗ Z ∗ Z is a free group with three generators.

The Seifert-Van Kampen theorem is a powerful tool to determine the fundamental group of some
topological spaces.
Conversely, a “natural” question is the following: given a group, is there any topological space
whose the fundamental group is the given group?
The answer is yes, let be a group G given by generators and relations, there is a topological space
X such that π1(X) = G (cf. Hatcher’s book, p.52).

7.4 Isotopy
A homotopy is a continuous one-parameter family of continuous functions.
An isotopy is a continuous one-parameter family of homeomorphisms.

Remark 7.4.1. The words homotopy and isotopy have two parts; “topo” for one-parameter
family, and “homo” for homomorphism or simply morphism, “iso” for isomorphism.

Definition 7.4.2. Let f, g : X −! Y be two homeomorphisms, they are called isotopic if
they can be joined by a homotopy F (the isotopy) which is a homeomorphism F (t, .) for every
t ∈ [0, 1].

Notice that the fact that X and Y are homeomorphic depends on X and Y themselves and
not on their disposition in the space, which is not true for isotopy. For example, given a long
rectangle, then glue the short opposite sides, first to obtain a cylinder, and secondly to obtain a
Mobius strip. These two surfaces are homeomorphic but not isotopic.
Let take another example. The map f : [−1,+1] −! [−1,+1] defined by f(x) = −x is
not isotopic to identity, but it is homotopic to identity. The homotopy is given by the map
F : [−1,+1] × [0, 1] −! [−1,+1] given by F (x, t) = 2tx − x. It is clearly a homotopy from the
function x 7−! −x to Identity. But F is not a isotopy (for 0 < t < 1, the function F is not a
homeomorphism). However, it is not a proof. We have to notice that the function Id preserves
the orientation and the function f reverse the orientation, that implies they are not isotopic.
Another example is two circles in R3 which are not linked, we call them X, and which are linked,
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we call them Y . Then X and Y are homeomorphic but not isotopic.

Figure 7.5

However, they are isotopic in R4.
In the figure below, X and Y are not isotopic in R2, but they are isotopic in R3.

Figure 7.6

A disk with the center deleted and a circle are homotopic (as exercise, define the homotopy), but
they are not isotopic, the disk is a surface and the circle is a curve, and a isotopy is one-to-one
and onto.
More generally, two subsets X and Y of the topological space Z are isotopic if they can be
distorted one into the other within Z without any cutting (breaking, tearing) or gluing.
Summary

• Two sets are isotopic if they can be distorted into each other without any cutting or tearing.

• Two sets are homeomorphic if there is a bijection from one to the other which is continuous
and its inverse is continuous.

• If two sets are isotopic then they are homeomorphic. If two sets are homeomorphic, they
are not necessarily isotopic.

7.4.1 Exercises
All the spaces are in R3.

1. Show that the two spaces are isotopic.
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2. Show that the two spaces are isotopic.

3. Show that the two spaces are isotopic.

4. Show that the two spaces are isotopic.
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5. Show that the spaces are isotopic.

Solutions.

1.

2.

3.
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4.
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Chapter 8
Covering Spaces

8.1 Introduction
Many functions are “multivalued” and as such they are not functions and they have special prop-
erties. Riemann1 introduced the so called Riemann surfaces on which the multivalued functions
become functions.
Let us give some examples. A complex number z is defined by its module and its argument arg(z).
The function arg is defined and multivalued for z 6= 0. It is θ+2kπ where 0 ≤ θ < 2π and k ∈ Z.
To z ∈ C∗, we associate infinitely values arg(z). So, consider (z, arg(z)) ∈ C∗ × R ⊂ R3 where
we identify C and R2. Let define C̃∗ = {(z, arg(z)) | z ∈ C∗}. C̃∗ is an infinite spiral wrapping
round the vertical axis in a right-handed fashion.
Let us give some properties of the space C̃∗.

1. There is a map p : C̃∗ −! C∗, (z, arg(z)) 7−! z.

2. For any z ∈ C∗, p−1(z) is a discrete space.

3. For any z ∈ C∗, there is a neighbourhood Uz such that p−1(Uz) is an infinite number of
disjoint open sets Ũn homeomorphic to Uz for any n ∈ Z.

4. The group Z acts on C̃∗ by n.(z, θ) = (z, θ + 2nπ).

5. The space C̃∗ is simply connected.

A second example is given by the “function” z 7−! zk where k = 1/2. For any z = ρeiθ ∈ C∗,
there are two values z1 =

√
ρei

θ
2 and z2 =

√
ρei(

θ
2 +π) such that z2

1 = z2
2 = z.

We define a space, called S, like a spiral with two twists such that over each point z 6= 0, there
are two points in S over z. More precisely, there is a map p : S −! C∗ with the following
properties:

1Georg Friedrich Bernhard Riemann (17 September 1826 - 20 July 1866) was a German mathematician who
made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly
known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series.
His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new
ground in a natural, geometric treatment of complex analysis. His famous 1859 paper on the prime-counting
function, containing the original statement of the Riemann hypothesis, is regarded, although it is his only paper
in the field, as one of the most influential papers in analytic number theory. Through his pioneering contributions
to differential geometry, Bernhard Riemann laid the foundations of the mathematics of general relativity.
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1. for each point z 6= 0 and not on the x-axis, there is a neighbourhood Uz ⊂ C∗ such that
p−1(Uz) is a disjoint union of two copies U+

z , U
−
z of Uz where

U+
z = {(z′, u) ∈ C2 | z′ ∈ Uz, u2 = z′, 0 ≤ arg(z′) < π}

U−z = {(z′, u) ∈ C2 | z′ ∈ Uz, u2 = z′, π ≤ arg(z′) < 2π}

2. There is an action of the quotient group π1(C∗)/2π1(C∗) = Z2 = {0̄, 1̄} on S where
0̄.(z, u) = (z, u) and 1̄.(z, u) = (z,−u).

3. The space S is connected, its fundamental group is isomorphic to Z and the induced map
p∗ : π1(S) −! π1(C∗) is multiplication by 2.

8.2 Definition & Examples
Definition 8.2.1. A continuous map p : E −! X is a covering map and E is a covering
space of X, if every x ∈ X has an open neighbourhood Ox such that p−1(Ox) is a disjoint union
of open sets Si, i ∈ I in E called sheets over Ox, each of which is mapped homeomorphically
onto Ox by p. Such Ox is said to be evenly covered.

So, a covering of the space X is given by a space E, a continuous map p : E −! X with the
property of local trivialization, i.e. for any x ∈ X, there is a neighbourhood Ox, a discrete
space F 6= ∅ and a homeomorphism p−1(Ox) −! Ox × F such that the following diagram is
commutative:

p−1(Ox)
≈ //

p
##

Ox × F

proj{{
Ox

Definition 8.2.2. A continuous map f : X −! Y is a local homeomorphism if each point
x ∈ X has an open neighbourhood Ox such that f(Ox) is open in Y and f|Ox is a homeomorphism
onto f(Ox).

Some properties

• For x ∈ X, the fiber over x, p−1(x), is discrete and if X is connected, all the fibers have
the same cardinality and p is surjective.
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• p is a local homeomorphism, but a local homeomorphism is not a covering map. (cf ex
8.2.3.2 )

• p is an open map.

• p maps E onto X and X has the quotient topology from E.

• If E is compact (resp. connected, resp. path-connected), then X is compact (resp. con-
nected, resp. path-connected).

• If X is Hausdorff, then E is Hausdorff.

Example 8.2.3. 1. p : E −! X a homeomorphism.

2. E = X × Y where Y is discrete, and p is the projection onto the first factor.

3. exp : R −! S1, t 7−! exp(2iπt).

8.2.1 Exercises
1. Prove the properties above.

2. A local homeomorphism such that all fibers are finite with the same cardinality, is a covering
map.

3. Let p : E −! X be a covering map. If Y ⊂ X, prove that p|p−1(Y ) : p−1(Y ) −! Y is a
covering map.

4. Let p : X −! Y be a local homeomorphism and s, s′ two sections of p. Show that if for
some point y ∈ Y, s(y) = s′(y), then s and s′ coincide on a neighbourhood of y.
If Y is connected, then s = s′.

5. Let G be a discrete group acting totally disconnected (i.e. ∀a ∈ E,∃Oa an open neigh-
bourhood of a such that g.Oa ∩ Oa = ∅,∀g 6= 1) on the space E. Prove that the quotient
map p : E −! E/G is a covering map.

8.2.2 Lifting problem
Given a covering map p : E −! X. Let f : Y −! X be a continuous map, the lifting problem
consists to find a continuous map F : Y −! E such that f = p ◦ F .

E

p

��
Y

F

;;

f
// X

Notice that if f(Y ) ⊂ U where U is evenly covered, then we can choose O ⊂ E homeomorphic
under p to U and F such that F (Y ) = O. So the lifting problem is locally solvable.
In the following, p : E −! X is a covering map. Choose e ∈ E, x ∈ X and y ∈ Y such that
f(y) = p(e) = x.

Theorem 8.2.4 (Unique Lifting theorem). Assume Y connected. If there exists a map
f : (Y ; y) −! (X;x), i.e. f(y) = x, such that p ◦ F = f , it is unique.
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Proof: Let G : Y −! E such that f = p ◦ G, and A = {y′ ∈ Y | F (y′) = G(y′)}, B = {y′ ∈
Y | F (y′) 6= G(y′)}. Then A ∪B = Y and y ∈ A.
We show that A and B are open and A 6= ∅. The space Y is supposed to be connected, so B = ∅
and the result follows.
We show that A is open. Let y′ ∈ Y and U an open neighbourhood of f(y′) which is evenly
covered and F (y′) = G(y′) ∈ Oi. Hence F−1(Oi) ∩ G−1(Oi) is an open neighbourhood of y′
contained in A and A is open.
We show that B is open. Let y′ ∈ B. Then F (y′) and G(y′) lie in two distinct sheets O and O′.
Hence F−1(O) ∩G−1(O′) is an open neighbourhood of y′, contained in B. �

The notation f : (X;x) −! (Y ; y) means that the map f : X −! Y satisfies the condition
f(x) = y.

Theorem 8.2.5 (Path Lifting theorem). Assume Y connected and p : E −! X a covering
map. If there exists a continuous map f : ([0, 1]; 0) −! (X;x) be a path, there is a unique path
F : ([0, 1]; 0) −! (E; e) such that p ◦ F = f .

Proof:
(E; e)

p

��
([0, 1], 0)

F

88

f
// (X;x)

• The space X is evenly covered.
The point e belongs to one sheet O and q = p|O is a homeomorphism onto X. Then q−1 ◦f
is the suitable lifting.

• The set f([0, 1]) is a union of open subsets Xi, i ∈ I which are evenly covered. Then
[0, 1] =

⋃
i f
−1(Xi), union of open subsets. By compactness of [0, 1], there is a finite

subcover of [0, 1], i.e. finitely many tj such that 0 < t1 < · · · < tj < · · · < tn < 1 such that
f([tj , tj+1]) is evenly covered. We have a lifting on each interval [tj , tj+1], hence a lifting
of the path f .

�

Definition 8.2.6. A map p : Y −! X has the path lifting property if, given x ∈ X, y ∈
p−1(x) and a path γ : [0, 1] −! X, γ(0) = x, then there is a unique lift γ̃ of γ to Y with γ̃(0) = y.

Theorem 8.2.7 (Covering Homotopy theorem). Assume Y connected. Suppose the map
f : (Y ; y) −! (X;x) has a lifting F : (Y ; y) −! (E; e). Then any homotopy H : Y ×I −! X with
H(y, 0) = f(y) for all y ∈ Y can be lifted to a homotopy H ′ : Y × I −! E with H ′(y, 0) = F (y)
for all y ∈ Y .

Proof:
(E; e)

p

��
(Y ; y)× 0

F

55

f //
� _

��

(X;x)

Id

��
(Y ; y)× I

H′

DD

H // (X;x)
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• If all of X is evenly covered by Si, i ∈ I, then p|Si is a homeomorphism and the result is
obvious.

• Otherwise, the proof is similar to the previous ones. By compactness of I = [0, 1], we
can suppose that there is suitable finite partition of I such that for each y ∈ Y , H maps
Uy × [ti, ti+1], where Uy open neighbourhood of y, into an evenly covered neighbourhood
of H(y, ti). By previous step, we can lift H on Uy × I to a map H ′ : Uy × I −! E such
that H ′(y′, 0) = F (y′) for all y′ ∈ Uy.

• The previous liftings on Uy×I and Uy′×I agree on (Uy∩Uy′)×I; hence we can piece them
together to obtain the liftings of H|y1×I , y1 ∈ Uy ∩Uy′ , which agree at the point (y1, 0). By
the unique lifting theorem, y1 × I being connected, these two liftings coincide.

�

Corollary 8.2.8. The map p∗ : π1(E; e) −! π1(X;x) is a monomorphism (i.e. injective homo-
morphism).

Proof: Let γ be a loop based at e ∈ E such that [γ] ∈ ker p∗, i.e. p ◦ γ is a loop homotopic to
the constant loop at x = p(e). The lifting (p ◦ γ)′ is homotopic to the lifting γ of the constant
loop at x. So, γ is homotopic to the constant loop and [γ] is trivial in π1(E; e). �

A topological space X is locally path-connected if given any point x ∈ X, and any open
subset A containing x, there is a smaller open set containing x, which is path-connected in the
subspace A.

Theorem 8.2.9. Let Y be a path connected and locally path connected space, and p : E −! X
a covering map. A map f : (Y ; y) −! (X;x) lifts to a map F : (Y, y) −! (E; e) iff f∗π1(Y ; y) ⊂
p∗π1(E; e).

Proof: =⇒) If f lifts to F , then f∗π1(Y ; y) = p∗F∗π1(Y ; y) ⊂ p∗π1(E; e).
⇐=) Let γ be a path from y to z ∈ Y , then f ◦ γ lifts to a unique path from e to F (z).
Suppose σ is another path from y to z. Then f(σ.γ−1) is a loop based at x and it lifts to a loop
based at e. So F is well defined.
F is continuous. �

Definition 8.2.10. A map p : Y −! X has the path lifting property if, given x ∈ X, y ∈
p−1(x) and a path γ : [0, 1] −! X, γ(0) = x, then there is a unique lift γ̃ of γ to Y with γ̃(0) = y.

Proposition 8.2.11. If p : Y −! X is an open map and has the path lifting property, and if X
is path connected and each point of X has an open simply connected neighbourhood, then p is a
covering map.

Proof: Let x ∈ X and O an open simply connected neighbourhood of x. Let Õ be a path
component of p−1(O) and two points y, y′ in the fiber p−1(x) ∩ Õ. Let γ be a path in Õ from y
to z. Then p ◦ γ is a loop in X based at x ans its unique lift is γ. The loop p ◦ γ is homotopic
to the constant loop at x. By the homotopy lifting property, y = z, so p|Õ is injective from Õ

to O. Since p takes open sets into open sets, p|Õ is a homeomorphism and hence p is a covering
map. �
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Fundamental Group of the Circle

The unit circle S1 is the group of complex numbers of absolute value 1. There is a continuous
homomorphism of groups

φ : R −−−! S1

x 7−−−! e2iπx

where ker(φ) = Z.
φ maps ] − 1

2 ,+
1
2 [ homeomorphically onto S1 \ {−1} and

more generally, any interval ]a, b[ with b− a ≤ 1 is homeo-
morphic to its image. So, φ is an open map. Moreover, it
is a covering map.
Notice that φ(n) = 1 for any n ∈ Z, so we choose the point
1 as based point.
Let γ be a path in S1 with initial point 1, then there is a
unique path γ′ in R with initial point 0 such that φ◦γ′ = γ.
If τ is a path in S1 with initial point 1 which is homotopic to
γ, then there is a unique homotopy from the lifting τ ′ of τ
to γ′ and the end point of γ′ depends only on the homotopy
class of γ.

Theorem 8.2.12. The fundamental group of the circle is infinite cyclic,

π1(S1) ∼= Z

Proof: Notice that the fiber φ−1(1) = Z. Any loop γ in S1 has a lifting γ′ in R such that
γ′(1) ∈ Z. Then we define the map χ : π1(S1; 1) −! Z by χ([γ]) = γ′(1).
It is a homomorphism: Given γ and τ two loops based at 1 ∈ S1 such that γ′(1) = m, τ ′(1) = n,
Define the path σ′ in R from m to m+ n given by σ′(s) = τ ′(s) +m. Then φ ◦ σ′ = τ , so γ′τ ′ is
the lifting of γτ with initial point 0; its end point is m+ n, hence χ([γ][τ ]) = χ([σ])χ([τ ]).
It is onto: Given n, define γ′(s) = ns. If γ = φ ◦ γ′, then χ([γ]) = n.
It is injective: Suppose χ([σ]) = 0, so σ′ is a loop in R at 0. R is contractible, so σ′ is homotopic
to 0, whence applying φ, γ is homotopic to 1 and [γ] = 1. �

Corollary 8.2.13. The circle is not a retract of the closed disk.

Proof: Suppose there is a continuous map r : D2 −! S1 such that r ◦ ι = IdS1 . Then
r∗ ◦ ι∗ = Idπ1(S1), i.e. the diagram is commutative

π1(D2) = 0

r∗

''
π1(S1) = Z

ι∗

77

Idπ1(S1) // π1(S1) = Z

which is not possible. �

Corollary 8.2.14. Any continuous map of a closed disk into itself has a fixed point.
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Proof:

Let f : D2 −! D2 be a continuous
map. Suppose f(x) 6= x for any x ∈ D2.
The half line from x to f(x) intersects
the boundary of D2 at the point de-
noted r(x). Then r : D2 −! S1 is a
retraction, which is a contradiction.

�

This corollary is a particular case to dimension 2 of the Brouwer Fixed Point Theorem.

8.3 Fundamental Groups & Covering Spaces
In this section, we consider a covering space p : (E; e) −! (X;x).
The corollary of the covering homotopy theorem is the first result which establishes a relation
between the covering maps and the fundamental groups.
Let p : E −! X be a covering map.

Theorem 8.3.1 (Covering Homotopy theorem). Assume Y connected. Let f : (Y ; y) −! (X;x)
be a map which has a lifting F : (Y ; y) −! (E; e). Then any homotopy H : Y × I −! X with
H(y, 0) = f(y) for all y ∈ Y can be lifted to a homotopy H ′ : Y × I −! E with H ′(y, 0) = F (y)
for all y ∈ Y .

Corollary 8.3.2. The map p∗ : π1(E; e) −! π1(X;x) is a monomorphism (i.e. injective homo-
morphism).

Proof: Let γ be a loop based at e ∈ E such that [γ] ∈ ker p∗, i.e. p ◦ γ is a loop homotopic to
the constant loop at x = p(e). The lifting (p ◦ γ)′ is homotopic to the lifting γ of the constant
loop at x. So, γ is homotopic to the constant loop and [γ] is trivial in π1(E; e). �

This result shows that the fundamental group π1(E; e) can be viewed as a subgroup of the
fundamental group π1(X;x).

Theorem 8.3.3. Let Y be a path connected and locally path connected space, and let
p : E −! X a covering map. A map f : (Y ; y) −! (X;x) lifts to a map F : (Y, y) −! (E; e) iff
f∗π1(Y ; y) ⊂ p∗π1(E; e).

Proof: =⇒) If f lifts to F , then f∗π1(Y ; y) = p∗F∗π1(Y ; y) ⊂ p∗π1(E; e).
⇐=) Let γ be a path from y to z ∈ Y , then f ◦ γ lifts to a unique path from e to F (z).
Suppose σ is another path from y to z. Then f(σ.γ−1) is a loop based at x and it lifts to a loop
based at e. So F is well defined.
F is continuous. (to be done) �

Notice that if Y is simply connected, then the lifting problem has a solution (the trivial group
is a subgroup of any group).

Proposition 8.3.4. If p : Y −! X is an open map and has the path lifting property, and if X
is path connected and each point of X has an open simply connected neighbourhood, then p is a
covering map.
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Proof: Let x ∈ X and O an open simply connected neighbourhood of x. Let Õ be a path
component of p−1(O) and two points y, y′ in the fiber p−1(x) ∩ Õ. Let γ be a path in Õ from y
to z. Then p ◦ γ is a loop in X based at x ans its unique lift is γ. The loop p ◦ γ is homotopic
to the constant loop at x. By the homotopy lifting property, y = z, so p|Õ is injective from Õ

to O. Since p takes open sets into open sets, p|Õ is a homeomorphism and hence p is a covering
map. �

8.3.1 Operation of π1(X;x) on the fiber p−1(x)
The previous results on the liftings of paths and homotopies can be viewed as an action of the
fundamental group of the base space on the fibers of the covering.

Proposition 8.3.5. Let p : (E; e) −! (X;x) be a locally path-connected covering where X is
path connected. Then

1. There is a right action of π1(X;x) on the fiber p−1(x).

2. The stabilizer of the point x is the subgroup p∗π1(E; e) ⊂ π1(X;x).

3. It is a transitive operation iff E is path connected.

Proof:

1. Let consider a covering map p : (E; e) −! (X;x).
Let γ be a loop at x in X, its lifting γ′ is a path from a ∈ p−1 to γ′a(1) ∈ p−1(x). This
point depends only on the homotopy class of γ, so we define the operation

p−1(x)× π1(X;x) −−−! p−1(x)

(a, [γ]) 7−−−! a.[γ] = γ′a(1)

As exercise, verify that a.1 = a and a.([γ][τ ]) = (a.[γ]).[τ ] for any a ∈ p−1(x) and [γ], [τ ] ∈
π1(X;x).

2. The stabilizer of the point e ∈ p−1(x) is the subgroup p∗π1(E, e) of π1(X;x), i.e. the set
of all σ ∈ π1(X;x) such that e.[σ] = e. (Recall that, if G is a group acting on the set S,
the stabilizer of s ∈ S is the subgroup Gs = {g ∈ G | s.g = s}.)

3. We assume that E is pathwise-connected, then π1(X;x) operates transitively, i.e. for any
a, b ∈ p−1(x) there exists [γ] ∈ π1(X;x) such that b = a.[γ].
The converse is true: if π1(X;x) operates transitively, then E is path connected. (exercise)

�

Thus, we have the following results:

Proposition 8.3.6. Let [γ] ∈ π1(X;x), and a ∈ p−1(x), so that p∗π1(E; a) ⊂ π1(X;x), there is
b ∈ p−1(x) such that p∗π1(E; b) = [γ]−1p∗π1(E; a)[γ].

Proof: The loop γ in the base space X lifts to the path γ′ from the point a ∈ p−1(x) to a point
γ′(1) = b ∈ p−1(x). Then there are two homomorphisms

v : π1(X;x) −−−! π1(X;x)

[σ] 7−−−! [γ−1][σ][γ]
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and

u : π1(E; a) −−−! π1(E; b)

[σ′] 7−−−! [γ]−1[σ′][γ]

such that the following diagram commutes.

π1(E; a)

u

��

p∗ // π1(X;x)

v

��
π1(E; b)

p∗ // π1(X;x)

�

Proposition 8.3.7. The map [γ] 7−! e.[γ] induces a bijection of the set of all cosets p∗π1(E; e)[γ]
onto the fiber. If p−1(x) is finite, the number of points in the fiber is equal to the index of the
subgroup p∗π1(E; e).

Proof: Let χ : π1(X;x) −! π1(X;x)/p∗(π1(E; e)) be the canonical surjection.
Let f : π1(X;x) −! p−1(x) be the map [γ] 7−! e.[γ].
Moreover e.[γ] = e.[σ] iff χ([γ]) = χ([σ]). Then, there is a map

ψ : π1(X;x)/p∗(π1(E; e)) −! p−1(x)

such that the following diagram is commutative

π1(X;x)

χ

��

f // p−1(x)

π1(X;x)/p∗(π1(E; e))

ψ
66

(to be finished) �

8.4 Classification of Coverings
In this section, we suppose that we are able to compute the fundamental groups. So, knowing
the fundamental groups, we will classify the covering spaces.

8.4.1 Covering Transformations
We assume that all spaces are path connected and locally path connected.
Let p1 : E1 −! X and p2 : E2 −! X be two covering maps of the same space X.

Definition 8.4.1. A covering transformation from the covering map p1 to the covering map
p2 is a continuous map φ : E1 −! E2 such the diagram commutes:

E1
φ //

p1   

E2

p2~~
X
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Note that if a ∈ p−1
1 (x), then φ(a) ∈ p−1

2 (x), i.e. φ
(
p−1

1 (x)
)
⊆ p−1

2 (x) for all x ∈ X.
Note also that the composition of two covering transformations is a covering transformation.

Definition 8.4.2. A covering transformation φ from p1 to p2 is a isomorphism if there is a
covering transformation ψ : E2 −! E1 such that φ ◦ ψ = IdE2

and ψ ◦ φ = IdE1
.

An isomorphism is an automorphism if E1 = E2.

An isomorphism between two covering spaces is a homeomorphism, but there exist homeomor-
phisms which are not isomorphisms of covering spaces. For example, consider the two following
covering spaces p1 : S1 −! S1 where p1(z) = z2 and p2 : S1 −! S1 where p2(z) = z3. It does
not exist some isomorphism from one of these two covering maps to the other one, although the
two spaces are clearly homeomorphic under φ. If φ is an isomorphism of covering spaces, then
the fibers p−1

1 (x) and p−1
2 (x) have the same cardinality, but even if they have same cardinality,

φ may be not an isomorphism.

Proposition 8.4.3. Let (Ei, pi), i = 1, 2 be two coverings of the space X such that p1(e1) =
p2(e2) = x. Then there exists a covering transformation φ : E1 −! E2 such that φ(e1) = e2 iff
p1∗π1(E1; e1) ⊂ p2∗π1(E2; e2).

Proof: It follows from the theorem 2.2.8 as a particular case. �

The following corollary is clear.

Corollary 8.4.4. There exists an isomorphism of coverings φ : (E1; e1) −! (E2; e2) iff
p1∗π1(E1; e1) = p2∗π1(E2; e2).

Notice that the isomorphism respects the base points.
If φ is a covering transformation and p1 = p2 ◦ φ, then one says that p1 dominates p2.
Let p1 : E1 −! X and p2 : E2 −! X be two coverings of the space X, and e1 ∈ p−1

1 (x), e2 ∈
p−1

2 (x) for x ∈ X.

Proposition 8.4.5. The two coverings are isomorphic iff the subgroups p1∗π1(E1; e1) and
p2∗π1(E2; e2) are conjugate in π1(X;x).

Proof: Let φ : E1 −! E2 be some isomorphism, and φ(e1) = b. Then p1∗π1(E1; e1) =
p2∗π1(E2; b). Let Γ be a path from e2 to b and γ its projection in X. γ is a loop. Then
the group p2∗π1(E2; b) is equal to the conjugate of π1(E2; e2) by [γ].
Suppose the subgroups p1∗π1(E1; e1) and p2∗π1(E2; e2) are conjugate, then the two coverings are
isomorphic (exercise). �

If E1 = E2 = E, then the set of all covering automorphisms is a group denoted A(E; p).

Proposition 8.4.6. The automorphism φ ∈ A(E; p) is determined by the image φ(a) for any
a ∈ E.

Proof: See lemma 2.4.1. �

Proposition 8.4.7. A(E; p) as a discrete group, acts continuously on E and on the fibers p−1(x).

Proof: The action of the discrete group A(E; p) on E is

ϕ : A(E; p)× E −−−! E

(g, a) 7−−−! g.a

and ϕ−1(O) =
⋃
g∈A(E;p){g} × g−1.O which is a union of open sets, so it is open. �
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8.4.2 Galois Coverings

Definition 8.4.8. A covering map p : E −! X is said to be Galois or regular if the group
A(E; p) acts transitively on the fibers.

Proposition 8.4.9. A covering map p : E −! X is Galois iff for any y ∈ X and any a ∈
p−1(y), p∗π1(E; a) is a normal subgroup of π1(X; y).
The group A(E; p) is isomorphic to the quotient group π1(X; y)/p∗π1(E; a).

Proof:
�

Corollary 8.4.10. If E is simply connected, the covering map p : E −! X is Galois and A(E; p)
is isomorphic to π1(X;x).

Proof: The space E is simply connected, so its fundamental group is trivial, i.e. π1(E; a) = 0
for any a ∈ E and the result follows. �

8.4.3 Universal Coverings

We have seen that isomorphic coverings correspond to conjugate subgroups of the fundamental
group of the base space of the coverings. Then, we have to construct a covering for each subgroup
of the fundamental group of the base space.

Definition 8.4.11. A covering p : E −! X is said to be universal if the fundamental group
π1(E) is trivial.

Two universal coverings of X are isomorphic (see prop....).

Proposition 8.4.12. Let p : E −! X be a covering of X and p̃ : Ẽ −! X the universal
covering. Then there is a covering transformation φ : Ẽ −! E.

Proof: Use prop. .... �
This result explains the terminology “universal”.

Note that a universal covering is Galois. Let p1 : E1 −! X and p2 : E2 −! X be two regular
coverings of X.
Then define p1 ≤ p2 if there is a covering transformation φ : E1 −! E2. It is an order on the
collection of all regular coverings of X, up to isomorphism.
For any regular covering p : E −! X of X, there are two covering transformations E −! X and
Ẽ −! E, then p ≤ Id and p̃ ≤ p, i.e. the identity covering is a final object and the universal
covering is an initial covering in the category of regular coverings of the space X.

Remark 8.4.13. Why do we restrict this order relation to regular coverings?
If we consider any coverings, then it can happen that p1 ≤ p2 and p2 ≤ p1 and the two coverings
are not isomorphic. Then it is not an order.

The question is: is there exist a universal covering of any space X?

Proposition 8.4.14. If the space X has a universal covering, then any point x ∈ X has a
neighbourhood Ox such that any loop in Ox, based at x, is homotopic in X to the constant loop
at x.
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Proof: Let s be a section over a neighbourhood Ox, of the universal covering p̃ : Ẽ −! X. Then
the injection ι : Ox ↪! X is equal to p̃ ◦ s and induces the trivial covering transformation from
π1(Ox;x) into π1(X;x). �

Definition 8.4.15. A space is locally simply connected if every point has at least one simply
connected open neighbourhood.

Theorem 8.4.16. Any path-connected, locally simply connected space has a universal covering.

Proof: Let X be a path-connected, locally simply connected space and x ∈ X a base point.
Consider the paths starting at x.Two such paths are equivalent if they have the same end points
and they are homotopic. (verify that it is an equivalence relation). Denote γ̂ the class of the
path γ where γ(0) = x.
Define Ẽ as the set of equivalence classes and define the map p : Ẽ −! X, γ̂ 7! γ(1).
Define a topology on Ẽ which makes it a simply connected space.
The base space X is locally simply connected, then X is covered by open sets which are con-
nected and such as any loop in the open set is homotopic to the constant loop in X. These open
sets are called fundamental open sets.
Let O be a fundamental open set, and γ a path from x to γ(1) ∈ O, and define (γ̂, O) the subset
of Ẽ formed with the paths σ such that there is γ̂′ ∈ O such that σ = γγ′.
These (γ̂, O) are a base for a topology on E, i.e. for any σ ∈ (γ̂1, O1)∩ (γ̂2, O2), there is a funda-
mental open set O such that (σ̂, O) ⊂ (γ̂1, O1) ∩ (γ̂2, O2). It is enough to take any fundamental
open set O such that p(σ) ∈ O ⊂ O1 ∩O2.

�

8.4.4 Summary of important facts on Coverings
Let p : E −! X be a covering, e ∈ E and x = p(e) ∈ X. Then

• The subgroups p∗π1(E; e) are a class of conjugacy of subgroups of π1(X,x).

• The group of automorphisms of the covering, denoted A(E, p) acts without fixed point on E.

• A(E, p) is isomorphic to the group of automorphisms of p−1(x) considered as right π1(X;x)-
space.

• If the covering is Galois, then A(E, p) ' π1(X;x)/p∗π1(E, p) for any x ∈ X and e ∈ p−1(x).

• If the covering is universal,

• π1(X) is in one-to-one correspondence with the set p−1(x).

• π1(X) is isomorphic to the group A(E, p).

• If e ∈ E such that p(e) = x ∈ X, then for each e′ ∈ p−1(x), there exists a unique
covering transformation mapping e to e′.
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Appendix A
Group Theory

A.1 Free Groups. Presentation of a Group

Let A be a set considered as an alphabet, so that a word is a finite juxtaposition of letters of
the alphabet. Let f : A −! A′ be a bijection where f(a) = a′, and W (A

∐
A′) the set of all

words made with the elements of A
∐
A′. Let R be the equivalence relation generated by the

relations:

(w1aa
′w2, w1w2) ∈W (A

∐
A′)2 and (w1a

′aw2, w1w2) ∈W (A
∐
A′)2

where wi ∈W (A
∐
A′), i = 1, 2, a ∈ A, a′ = f(a) ∈ A′.

The equivalence relation R is the intersection of all equivalence relations containing the above
relations.
We define an associative law W (A

∐
A′) ×W (A

∐
A′) −! W (A

∐
A′) by (w1, w2) 7−! w1w2

where the empty word is the neutral element. However, the inverse element of a word w is not
defined.
The quotient W (A

∐
A′)/R := F [A] is a group.

The class of the word w is the “reduced” word denoted w.

The equivalence class of a′ ∈ A′ is denoted a−1. We write an for the word
n terms︷ ︸︸ ︷
a. · · · .a, for n ∈ N

and for the word

−n terms︷ ︸︸ ︷
a−1. · · · .a−1 for n ∈ Z, n < 0, and 1 for the word a0 which correspond to the

empty word, a for the word a1, am+n for the word aman.
It is easy to show that the law on the quotient induced by the law on W (A

∐
A′) is associative

and 1 is the neutral element.
Let w = aε11 a

ε2
2 · · · aεnn ∈W (A

∐
A′) be a word where ai ∈ A if εi = 1 and ai ∈ A′ if εi = −1 and w

its equivalence class. Then the opposite element w−1 is the equivalence class of a−εnn · · · a−ε22 a−ε11 .
Let ri ∈ F [A], i ∈ I and R the least normal subgroup of F [A] containing the ri, i ∈ I.

Definition A.1.1. An isomorphism of F [A]/R onto a group G is a presentation of G. The
set A is the set of generators for the presentation and each ri is a relator. We denote G :=
(A, {ri, }).
If R = ∅, then F [A] is the free group generated by A.
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Universal Mapping Property

Let f : A −! G be a map from the set A to a group G.
Then, F [A] is a free group on the set A iff there is a unique
homomorphism h : F [A] −! G such that f = h ◦ ι where
ι : A −! F [A] is the canonical injection.

A
ι //

f
$$

F [A]

h

��
G

For a ∈ A, we have ι(a) ∈ F [A], for simplicity, we denote ι(a) = a. Define h(a) = f(a).
Let g, g′ ∈ F [A], where g = aα1

i1
· · · aαnin b

β1

i1
· · · bβmim , and g′ = b−βmim

· · · b−β1

i1
a′
α1

i1 · · · a
′αn
ip , with

ai, a
′
i, bj ∈ A,αk = ±1, βj = ±1. Then

gg′ = aα1
i1
· · · aαnin b

β1

i1
· · · bβmim b

−βm
im
· · · b−β1

i1
a′
α1

i1 · · · a
′αn
ip = aα1

i1
· · · aαnin a

′α1

i1 · · · a
′αn
ip .

We define h(g) = f(ai1)α1 · · · f(ain)αnf(bi1)β1 · · · f(bim)βm ,
h(g′) = f(bim)−βm · · · f(bi1)−β1f(a′i1)α1 · · · f(a′ip)αn .
Then, it is easy to verify that h(gg′) = h(g)h(g′). Hence h is a homomorphism and is unique.

The free abelian groups are defined similarly.
Let f : A −! G be a map from the set A to an abelian group G. Then, F [A]ab is a free abelian
group on the set A iff there is a unique homomorphism h : F [A]ab −! G such that f = h ◦ ι
where ι : A ↪−! F [A]ab is the inclusion.
The free group F [A] is abelian iff |A| = 1.
Notice that the free group is defined in the category of groups, and the free abelian group is
defined in the (sub)category of abelian groups.
For any group G generated say by a set A, there exists a free group F [A′] where |A′| = |A|, and
an epimorphism f : F [A′] −! G.

Example A.1.2. Suppose the group G has generators x and y and relation (xyx−1y−1, 1). Then
G is abelian.

Example A.1.3. If A = {a}, then the free group F [A] on one generator a is infinite cyclic.

A.1.1 Exercises

1. This exercise illustrates the fact that if the group G contains two isomorphic normal sub-
groups H and K, then G/H need not be isomorphic to G/K.

(a) Compute
(
Z2 × Z4

)
/ < (1, 0)>. “Compute” means discover to which of the two (up

to isomorphism) groups of order 4 this quotient group is isomorphic.

(b) Repeat with
(
Z2 × Z4

)
/ <(0, 2)>

2. Show that if H and N are subgroups of a group G, and N is normal in G, then H ∩N is
normal in H. Show by an example that H ∩N need not be normal in G.

3. Determine the group G =
(
a, b, c; {a3}, {b3}, {c4}, {ac = ca−1}, {aba−1 = bcb−1

)
.

A.2 Product & Coproduct of Groups

In this section, we consider the category of groups Grp.
Let G1 and G2 be two groups.
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A.2. PRODUCT & COPRODUCT OF GROUPS

A.2.1 Free Product of Groups

The elements of the groups G1 and G2 considered as subgroups of the product G1×G2 commute,
i.e. let g1 ∈ G1, g2 ∈ G2 and (g1, e2) ∈ G1 ×G2, (e1, g2) ∈ G1 ×G2, then

(g1, e2) + (e1, g2) = (g1, g2) = ((e1, g2) + (g1, e2)

We define a nonabelian version of the direct sum.
Let denote G1 ∗G2 := {g1g2 · · · gm} where m ∈ N be the set of words where each letter gi belongs
to G1 or G2 and adjacent letters do not belong to the same group. The empty word is allowed.
Let define a group operation on G1 ∗G2 as follows:

(g1g2 · · · gm)(h1h2 · · ·hn) =

{
g1g2 · · · gmh1h2 · · ·hn if gm ∈ Gi, h1 ∈ Gj 1 ≤ i 6= j ≤ 2
g1 · · · gm−1kh2 · · ·hn if gm ∈ Gi, h1 ∈ Gi, k = gmh1

The empty word is the neutral element. This operation defines a structure of group on the set
G1 ∗ G2, called the free product of the groups G1 and G2. Notice that this construction can
be generalized to any family of groups.

Example A.2.1. As an example, Z ∗ Z is a free group.
Another example is Z2∗Z2 where we have a2 = e = b2, so the words are a, b, ab, ba, aba, bab, abab,
baba, ababa, . . ..
The group presented by

(
a, b; {a4}, {b6}

)
is the free product of the cyclic groups

(
a; {a4}

)
and the

cyclic group
(
b; {b6}

)
.

Universal Mapping Property

Let ki : Gi −! G1 ∗G2, i = 1, 2 be the maps defined by sending gi to the word denoted gi. The
free product of two groups is defined by the triple (G1 ∗G2, k1, k2) that satisfies the following
universal mapping property. Given a group G and two homomorphisms fi : Gi −! G, there is
a unique homomorphism h : G1 ∗G2 −! G such that fi = h ◦ ki, i = 1, 2.

G

G1
k1 //

f1

88

G1 ∗G2

h

OO

G2
k2oo

f2

ff

The map h is defined as follows: if g ∈ G1, h(g) = f1(g) and if g ∈ G2, h(g) = f2(g).
h(g1 . . . gm) = fi1(g1) · · · fim(gm) where ij = 1 if gj ∈ G1 and ij = 2 if gj ∈ G2, j = 1, . . . ,m. It
is easy to prove that h is a homomorphism and it is unique (exercise).
Hence, G1 ∗G2 satisfies the universal property as the coproduct of G1 and G2 in the category of
groups Grp.

A.2.2 Direct Product of Groups

Let (G1, ∗) and (G2, ∗) be two groups. Then the product set G1 ×G2 where (g1, g2) ∗ (h1, h2) =
(g1 ∗h1, g2 ∗h2) is called the direct product of the groups G1 and G2 (for simplicity, we denote
by the same symbol ∗ the different group operations).
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Universal Mapping Property

The direct product of two groups G1, G2 defined by the triple (G1 × G1, p1, p2), satisfies the
universal mapping property if for any group G′, and any homomorphisms φi : G′ −! Gi, i = 1, 2,
there exists a unique homomorphism φ : G′ −! G1 × G2 such that the following diagram is
commutative

G′

φ1

ww
φ

��

ϕ2

''
G1 G1 ×G2p1
oo

p2
// G2

where pi : G1 × G2 −! Gi, i = 1, 2 are the canonical projections (g1, g2) 7! gi. Notice that pi
are homomorphisms.
The map φ is defined as φ(g′) = (φ1(g′), φ2(g′)), for g′ ∈ G′, as for the case where the groups
are Abelian.
As exercise, show that the map h is the unique homomorphism making commutative the above
diagram.
A direct product of Abelian groups as Abelian groups, i.e. in the category Ab is the same as
their direct product as groups, i.e. in the category Grp.

There is a useful criterion for a group to be a direct product of subgroups:

Proposition A.2.2. Let G be a group and let H,K be two subgroups such that
H ∩ K = {e}, and {h ∗ k | h ∈ H, k ∈ K} = HK = G, and such that h ∗ k = k ∗ h for
all h ∈ H and k ∈ K. Then the map

H ×K −−−! G

(h, k) 7−−−! h ∗ k

is an isomorphism.

Proof: It is obviously a homomorphism, which is surjective since HK = G. If (h, k) is in its
kernel, then h = k−1, whence h lies in both H and K, and h = e, so that k = e also, and our
map is an isomorphism. �

The free product of two groups can be viewed as the dual of the direct product in the category
of the groups Grp.

A.2.3 More on Coproducts of Groups

In the category of Abelian groups, we saw that the direct product and the direct sum of two
Abelian groups are equal. The coproduct or direct sum G1 ⊕G2 of two Abelian groups G1 and
G2 in the category of Abelian groups Ab is not equal to the coproduct in the category of groups
Grp.
Consider two Abelian groups G1 and G2, their direct sum G1⊕G2 in the category Ab, and their
free product G1 ∗G2, in the category Grp. They are both coproducts in two different categories.
Recall that the triple (G1 ∗ G2, k1, k2) defines the free product dans la category Grp and
(G1 ×G2, j1, j2) the direct sum of the two groups G1 and G2 dans la category Ab.
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G1 ⊕G2

G1

j1

::

k1 $$

G2

j2

dd

k2zz
G1 ∗G2

m

OO (g1, e2) (e1, g2)

g1

0

88

�

&&

g2
�

ff

0

xx
g1 ĝ2

_

OO

By construction of G1 ∗G2, there exists a unique homomorphism m : G1 ∗G2 −! G1 ⊕G2 such
that m(g1) = (g1, e2),m(ĝ2) = (e1, g2), where g1 = k1(g1), ĝ2 = k2(g2). We have

m(g1) +m(ĝ2) = (g1, e2) + (e1, g2) = (g1, g2) = (e1, g2) + (g1, e2) = m(ĝ2) +m(g1)

Then m(g1) +m(ĝ2) = m(ĝ2) +m(g1), i.e. m(g1ĝ2) = m(ĝ2g1), i.e. m(g1ĝ2g1
−1ĝ2

−1) = (e1, e2),
i.e. g1ĝ2g1

−1ĝ2
−1 = [g1, ĝ2] = eG1∗G2 , hence [k1(G1), k2(G2)] = ker(m), so

G1 ⊕G2 = (G1 ∗G2)ab

The direct sum of two Abelian groups in the category of Abelian groups Ab is the abelianization
of the free product of the two groups in the category of groups Grp.

A.3 Amalgamated Free Products

Let G1, G2 and H be three groups and fi : H −! Gi, i = 1, 2 two homomorphisms, N the normal
subgroup of G1 ∗G2 generated by the elements f1(x)f2(x)−1, x ∈ H. The amalgamated free
product is denoted G1 ∗H G2 := (G1 ∗G2)/N .
For any x ∈ H, we have the images of f1(x) and f2(x) in G1 ∗H G2 are equal.

Universal Mapping Property

Given two homomorphisms fi : H −! Gi, i = 1, 2 and the
coproduct (G1 ∗G2, k1, k2), we get the homomorphisms
φi = can◦ki : Gi −! G1 ∗G2 −! G1 ∗HG2 = G1 ∗G2/N .
For any homomorphisms hi : Gi −! G, i = 1, 2, we have
to define the unique homomorphism l making the diagram
commutative (exercise).

H
f1 //

f2

��

G1

φ1

�� h1

��

G2
φ2 //

h2 --

G1 ∗H G2

l

&&
G

Notice that if H = {e} is the trivial group, then the amalgamated free product G1 ∗H G2 is the
free product G1 ∗G2.
Let G1 = (α1, . . . , αm ; r11 = · · · = r1p = 1) and G2 = (β1, . . . , βn ; r21 = · · · = r2q = 1)
be the presentations of the groups G1, and G2 and {γ1, . . . , γs} some generators of H. Then a
presentation of the amalgamated free product G1 ∗H G2 is

(φ1(α1), . . . , φ1(αm), φ2(β1), . . . , φ2(βn); r11 = · · ·=r1p=r21 = · · ·=r2q=1, f1(γi)=f2(γi), i ≤ s)

where rkl are the relations in G1 ∗H G2 obtained from the relations rkl in Gi under the homo-
morphisms φ1 and φ2.
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For example, let G be the group presented by
(
a, b; {a4}, {b6}, {a2 = b3}

)
. The homomorphism

G −−−!
(
x; {x12}

)
a 7−−−! x3

b 7−−−! x2

shows that the order of a is four and the order of b is six. Let G1 =
(
a; {a4}

)
and G2 =

(
b; {b6}

)
be two groups. Let Ha be the subgroup of G1 with order two and Hb the subgroup of G2 with
order two. The subgroups Ha and Hb are amalgamated under the mapping a2 7−! b3 and the
group G is the amalgamated free product of the groups Ha and Hb under the mapping a2 7−! b3.
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