Commutative Algebra Fall 2020 (Part II) Problem Set 1

(1) (Euclidian Algorithm)

- Find polynomials u, v such that gcd(f,g) = uf + vg for $f = x^4 2x^2 + 1$, $g = (x^2 + 4x + 3)^2 \in \mathbb{R}[x]$
- Find polynomials u, v such that gcd(f,g) = u f + v g for $f = x^4 2x^2 + 1$, $g = (x^2 + 4x + 3)^2 \in \mathbb{F}_2[x]$ (here \mathbb{F}_2 is the field of the integers mod 2, e.g. 4 = 0 and 3 = 1).
- Let $f, g \in \mathbb{Q}[x]$. Then one can also consider f, g as polynomials in $\mathbb{R}[x]$. Show that gcd(f,g) is independent of considering f, g in $\mathbb{R}[x]$ or in $\mathbb{Q}[x]$.
- (2) Find a polynomial $f \in \mathbb{R}[x]$ such that

$$(f) = \left(x^4 + 3x^2 - 4, x^3 + 2x^2 - 1, x^4 + 4x^3 + 6x^2 + 4x + 1\right).$$

- (3) Let m_1, \ldots, m_r be monomials in $S = \mathbb{K}[x_1, \ldots, x_n]$, such that as vectorspaces $\dim_{\mathbb{K}} S/(m_1, \ldots, m_r) < \infty$. Show that: For all $1 \le i \le n$ there is a $1 \le j \le r$ such that mit $m_j = x_i^{a_i}$ for some $a_i \ge 0$.
- (4) Let I be a monomial ideal in $\mathbb{K}[x_1, \ldots, x_n]$. Show that:

$$\sqrt{I} = \{ f \in k[x_1, \dots, x_n] \mid \exists n : f^n \in I \}$$

is a monomial ideal generated by squarefree monomials. (The fact that \sqrt{I} is an ideal, holds for a general ideal I in a commutative ring R).