Commutative Algebra Fall 2020 (Part II)

Problem Set 1

(1) (Euclidian Algorithm)

- Find polynomials u, v such that $\operatorname{gcd}(f, g)=u f+v g$ for $f=x^{4}-2 x^{2}+1$, $g=\left(x^{2}+4 x+3\right)^{2} \in \mathbb{R}[x]$
- Find polynomials u, v such that $\operatorname{gcd}(f, g)=u f+v g$ for $f=x^{4}-2 x^{2}+1$, $g=\left(x^{2}+4 x+3\right)^{2} \in \mathbb{F}_{2}[x]$ (here \mathbb{F}_{2} is the field of the integers mod 2 , e.g. $4=0$ and $3=1$).
- Let $f, g \in \mathbb{Q}[x]$. Then one can also consider f, g as polynomials in $\mathbb{R}[x]$. Show that $\operatorname{gcd}(f, g)$ is independent of considering f, g in $\mathbb{R}[x]$ or in $\mathbb{Q}[x]$.
(2) Find a polynomial $f \in \mathbb{R}[x]$ such that

$$
(f)=\left(x^{4}+3 x^{2}-4, x^{3}+2 x^{2}-1, x^{4}+4 x^{3}+6 x^{2}+4 x+1\right) .
$$

(3) Let m_{1}, \ldots, m_{r} be monomials in $S=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, such that as vectorspaces $\operatorname{dim}_{\mathbb{K}} S /\left(m_{1}, \ldots, m_{r}\right)<\infty$. Show that: For all $1 \leq i \leq n$ there is a $1 \leq j \leq r$ such that mit $m_{j}=x_{i}^{a_{i}}$ for some $a_{i} \geq 0$.
(4) Let I be a monomial ideal in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Show that:

$$
\sqrt{I}=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right] \mid \exists n: f^{n} \in I\right\}
$$

is a monomial ideal generated by squarefree monomials. (The fact that \sqrt{I} is an ideal, holds for a general ideal I in a commutative ring R).

