DIFFERENTIAL GEOMETRY

PARTIAL EXAM

The allowed time is 2 hours. Please justify carefully every answer.
Exercise 1 Let C and P be the subsets of \mathbb{R}^{3} given by the equations

$$
C:=\left\{(x, y, z): x^{2}+y^{2}=z^{2}\right\} \quad \text { and } \quad P:=\{(x, y, z): z=2\}
$$

(1) Prove that $C \cap P$ is the support of a closed parametrized regular curve $\sigma: I \rightarrow \mathbb{R}^{3}$, for some interval $I \subset \mathbb{R}$.
(2) Find an explicit parametrization of σ by arclength and compute its length.

Exercise 2 Let $\sigma:(0,+\infty) \rightarrow \mathbb{R}^{3}$ be given by

$$
\sigma(t):=\left(t, \frac{1+t}{t}, \frac{1-t^{2}}{t}\right)
$$

(1) Prove that σ is regular.
(2) Compute the curvature of σ.
(3) Compute the torsion of σ.

Exercise 3 Let $\sigma: I \rightarrow \mathbb{R}^{3}$ be a regular curve of class C^{∞}. Let

$$
\sigma(t)=(x(t), y(t), z(t))
$$

be an explicit parametrization of σ and consider the curve $\gamma: I \rightarrow \mathbb{R}^{3}$ parametrized by

$$
\gamma(t)=\frac{\sigma^{\prime}(t)}{\left\|\sigma^{\prime}(t)\right\|}=\frac{1}{\left\|\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)\right\|}\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)
$$

(1) [More difficult] Prove that γ is regular if and only if σ is biregular (do not assume that σ is parametrized by arc length here).
(2) Assume now that σ is parametrized by arclength. Prove that also γ is parametrized by arclength if and only if the curvature κ of σ satisfies $\kappa \equiv 1$.

DIFFERENTIAL GEOMETRY

PARTIAL EXAM

The allowed time is 2 hours. Please justify carefully every answer.
Exercise 1 Let C and P be the subsets of \mathbb{R}^{3} given by the equations

$$
C:=\left\{(x, y, z): x^{2}+y^{2}=z^{2}\right\} \quad \text { and } \quad P:=\{(x, y, z): z=2\}
$$

(1) Prove that $C \cap P$ is the support of a closed parametrized regular curve $\sigma: I \rightarrow \mathbb{R}^{3}$, for some interval $I \subset \mathbb{R}$.
(2) Find an explicit parametrization of σ by arclength and compute its length.

Solution. (1) The intersection $C \cap P$ is a circle in \mathbb{R}^{3}, of equations

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=4 \\
z=2
\end{array}\right.
$$

In particular, it is a circle of radius 2. A possible way to write a natural parametrization is to consider $I=[0,2 \pi]$ and the map $\sigma: I \rightarrow \mathbb{R}^{3}$ given by

$$
\sigma(t)=(2 \cos t, 2 \sin t, 2)
$$

The curve σ is regular since $\sigma^{\prime}(t)=(-2 \sin t, 2 \cos t, 0)$ is non zero for all values of $t \in I$. The curve is closed since $\sigma(0)=(2,0,2)=\sigma(2 \pi)$.
(2) We have $\left\|\sigma^{\prime}(t)\right\|=2$ for every $t \in I$. We thus need to do a change of variables of the form $s=2 t$, with $s \in[0,4 \pi]$. We thus get

$$
\tilde{\sigma}(s)=(2 \cos (s / 2), 2 \sin (s / 2), 2)
$$

This is a parametrization of σ by arclength. Indeed, we have $\tilde{\sigma}^{\prime}(s)=(\cos (s / 2), \sin (s / 2), 0)$ and thus $\left\|\tilde{\sigma}^{\prime}\right\|=1$, as required. The length of $\tilde{\sigma}$ (and of σ) is then 4π (which is indeed the length of a circle of radius 2).

Exercise 2 Let $\sigma:(0,+\infty) \rightarrow \mathbb{R}^{3}$ be given by

$$
\sigma(t):=\left(t, \frac{1+t}{t}, \frac{1-t^{2}}{t}\right)
$$

(1) Prove that σ is regular.
(2) Compute the curvature of σ.
(3) Compute the torsion of σ.

Proof. (1) Taking the first derivative of σ we find that

$$
\sigma^{\prime}(t)=\left(1,-\frac{1}{t^{2}},-\frac{1}{t^{2}}-1\right)
$$

Thus, σ is regular as for every $t \in(0, \infty)$ we have that $\sigma^{\prime}(t) \neq 0$.
(2) Taking the second derivative of σ we find

$$
\sigma^{\prime \prime}(t)=\left(0, \frac{2}{t^{3}}, \frac{2}{t^{3}}\right) .
$$

Then we compute that

$$
\sigma^{\prime}(t) \wedge \sigma^{\prime \prime}(t)=\left(\frac{2}{t^{3}},-\frac{2}{t^{3}}, \frac{2}{t^{3}}\right)
$$

and so

$$
\left\|\sigma^{\prime}(t) \wedge \sigma^{\prime \prime}(t)\right\|=\frac{2 \sqrt{3}}{t^{3}}
$$

From part (1) we have

$$
\left\|\sigma^{\prime}(t)\right\|=\frac{\sqrt{2\left(1+t^{2}+t^{4}\right)}}{t^{2}}
$$

Then using the formula

$$
\kappa(t)=\frac{\left\|\sigma^{\prime} \wedge \sigma^{\prime \prime}\right\|}{\left\|\sigma^{\prime}\right\|^{3}}
$$

we obtain

$$
\kappa(t)=\frac{\sqrt{3} t^{3}}{\sqrt{2}\left(1+t^{2}+t^{4}\right)^{3 / 2}} .
$$

(3) Calculating the third derivative we obtain

$$
\sigma^{\prime \prime \prime}(t)=\left(0,-\frac{6}{t^{4}},-\frac{6}{t^{4}}\right) .
$$

To calculate the torsion we employ the formula

$$
\tau(t)=\frac{\left\langle\sigma^{\prime}(t) \wedge \sigma^{\prime \prime}(t), \sigma^{\prime \prime \prime}(t)\right\rangle}{\left\|\sigma^{\prime}(t) \wedge \sigma^{\prime \prime}(t)\right\|^{2}} .
$$

We note that

$$
\left\langle\sigma^{\prime} \wedge \sigma^{\prime \prime}, \sigma^{\prime \prime \prime}\right\rangle=\frac{12}{t^{7}}-\frac{12}{t^{7}}=0
$$

and so $\tau \equiv 0$.
It is also possible to directly observe that the support of σ lies in a plane in \mathbb{R}^{3}, and thus the torsion must necessarily be zero. Indeed, writing $\sigma(t)=(x(t), y(t), z(t))$, we can check that

$$
x(t)-y(t)+z(t)=-1
$$

for every $t \in(0,+\infty)$. This implies the assertion.

Exercise 3 Let $\sigma: I \rightarrow \mathbb{R}^{3}$ be a regular curve of class C^{∞}. Let

$$
\sigma(t)=(x(t), y(t), z(t))
$$

be an explicit parametrization of σ and consider the curve $\gamma: I \rightarrow \mathbb{R}^{3}$ parametrized by

$$
\gamma(t)=\frac{\sigma^{\prime}(t)}{\left\|\sigma^{\prime}(t)\right\|}=\frac{1}{\left\|\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)\right\|}\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right) .
$$

(1) [More difficult] Prove that γ is regular if and only if σ is biregular (do not assume that σ is parametrized by arc length here).
(2) Assume now that σ is parametrized by arclength. Prove that also γ is parametrized by arclength if and only if the curvature κ of σ satisfies $\kappa \equiv 1$.

Solution. (1) Recall that, by definition, a curve is regular if the tangent vector is never zero and biregular if the curvature is never zero. In our case, the curvature κ of σ, is given by

$$
\kappa=\frac{\left\|\sigma^{\prime} \wedge \sigma^{\prime \prime}\right\|}{\left\|\sigma^{\prime}\right\|^{3}}
$$

(since we cannot assume that σ is parametrized by arclength for now). In particular, we have that

$$
\sigma \text { is not regular at } t_{0} \text { if and only if } \exists A \text { such that } \sigma^{\prime \prime}\left(t_{0}\right)=A \sigma^{\prime}\left(t_{0}\right) .
$$

Let us look for a similar condition for the regularity of γ. We have

$$
\gamma^{\prime}\left(t_{0}\right)=\frac{d}{d t} \frac{\sigma^{\prime}}{\left\|\sigma^{\prime}\right\|}=\frac{\left\|\sigma^{\prime}\right\|^{2} \sigma^{\prime \prime}-\left\langle\sigma^{\prime}, \sigma^{\prime \prime}\right\rangle \sigma^{\prime}}{\left\|\sigma^{\prime}\right\|^{3}}
$$

where the right hand side is evaluated at t_{0}. Thus, γ is not regular if and only if the numerator of the last expression is zero. This happens precisely when $\sigma^{\prime \prime}$ is a multiple of σ^{\prime}. This gives the desired equivalence.
(2) Assume now that σ is parametrized by arc length. This means that $\|\dot{\sigma}(s)\|=1$ for every s. In this case, we thus have $\gamma^{\prime}=\ddot{\sigma}$ and $\kappa=\|\ddot{\sigma}\|$. We thus have

$$
\kappa \equiv 1 \quad \Leftrightarrow \quad\|\ddot{\sigma}\| \equiv 1 \quad \Leftrightarrow \quad\left\|\gamma^{\prime}\right\| \equiv 1 \quad \Leftrightarrow \quad \gamma \text { is parametrized by arc length }
$$

The proof is complete.

DIFFERENTIAL GEOMETRY

FINAL EXAM

The allowed time is 3 hours. Please justify carefully every answer, and quote the statements for the lectures that you use.

Exercise 1 Let $X \subset \mathbb{R}^{3}$ be defined as

$$
X:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z\right\}
$$

and let $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by

$$
\phi(u, v):=\left(u+v, u-v, 2 u^{2}+2 v^{2}\right) .
$$

(1) Prove that X is a regular surface.
(2) Prove that ϕ is a global parametrization of X.
(3) Compute the Gaussian curvature of X with respect to the parametrization ϕ.
(4) Compute the mean curvature of X with respect to the parametrization ϕ.

Exercise 2 Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be defined as

$$
\sigma(t)=\left(\begin{array}{c}
e^{t \sin \alpha} \cos t \\
e^{t \sin \alpha} \sin t \\
e^{t \sin \alpha} \cot \alpha
\end{array}\right)
$$

where $\alpha \in\left(0, \frac{\pi}{2}\right)$ and $\cot \alpha=\frac{\cos \alpha}{\sin \alpha}$.
(1) Prove that σ is a regular curve.
(2) Prove that the support of σ is contained in $C_{a} \cap\{z>0\}$ for some positive a, where C_{a} is the cone of equation $x^{2}+y^{2}=a z^{2}$. Prove that $\sigma(t) \rightarrow(0,0,0)$ as $t \rightarrow-\infty$
(3) Prove that, for every $T \in \mathbb{R}$, the curve $\sigma_{(-\infty, T]}$ is rectifiable.
(4) Find a parametrization of σ by arclength.

DIFFERENTIAL GEOMETRY

FINAL EXAM

The allowed time is 3 hours. Please justify carefully every answer, and quote the statements for the lectures that you use.

Exercise 1 Let $X \subset \mathbb{R}^{3}$ be defined as

$$
X:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z\right\}
$$

and let $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by

$$
\phi(u, v):=\left(u+v, u-v, 2 u^{2}+2 v^{2}\right) .
$$

(1) Prove that X is a regular surface.
(2) Prove that ϕ is a global parametrization of X.
(3) Compute the Gaussian curvature of X with respect to the parametrization ϕ.
(4) Compute the mean curvature of X with respect to the parametrization ϕ.

Solution. (1) X is the zero level of the function $G: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $G(x, y, z)=x^{2}+y^{2}-z$. Since the preimage of a regular value is a regular surface, it is enough to prove that 0 is a regular value for G. Recall that this means that no point q in the preimage of 0 is critical, i.e., satisfies $\nabla G=0$. Let us compute the gradient of G. We have

$$
\nabla G(x, y, z)=(2 x, 2 y,-1) .
$$

We see that ∇G never vanishes. In particular, 0 is a regular value and X is a regular surface.
(2) As X the zero level set of the function G and 0 is regular value for G it suffices to check that $\phi\left(\mathbb{R}^{2}\right) \subset X, \phi$ is injective and $d(\phi)_{(u, v)}$ is injective for all $(u, v) \in \mathbb{R}^{2}$ in order to conclude that ϕ is a local parametrization of X.

The first check is immediate: for every $(u, v) \in \mathbb{R}^{2}$ we have

$$
(u+v)^{2}+(u-v)^{2}-\left(2 u^{2}+2 v^{2}\right)=0
$$

which proves that $\phi(u, v) \in X$.
For the injectivity of ϕ it is enough to consider the first two coordinates: it is straightforward to check that for every $x, y \in \mathbb{R}^{2}$ the system

$$
\left\{\begin{array}{l}
u+v=x \\
u-v=y
\end{array}\right.
$$

has one and only one solution.
Finally, let us compute the differential $d \phi$. We have

$$
d \phi_{(u, v)}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1 \\
4 u & 4 v
\end{array}\right) .
$$

The determinant of the minor given by the first two rows is constantly equal to -2 . Thus, the two columns of the matrix representing $d \phi$ are always independent, and this proves that $d \phi$ is injective for all $(u, v) \in \mathbb{R}^{2}$. This establishes that ϕ is a local parametrization.

To see that ϕ is a global parametrization it suffices to show that $X=\phi\left(\mathbb{R}^{2}\right)$. Since we have already checked that $\phi\left(\mathbb{R}^{2}\right) \subset X$ it suffices to show the opposite inclusion. Indeed for an arbitrary $(x, y, z) \in X$ we may take $u=\frac{1}{2}(x+y), v=\frac{1}{2}(x-y)$ to see that

$$
\phi(u, v)=(x, y, z) .
$$

This concludes that $X=\phi\left(\mathbb{R}^{2}\right)$ and that ϕ is a global parametrization of X.
(3) In order to compute the Gaussian curvature we compute the metric coefficients E, F, G and the form coefficients e, f, g of the first and second fundamental forms with respect to the parametrization ϕ.

Let us denote by ∂_{u} and ∂_{v} the tangent vectors induced by ϕ corresponding to the coordinates (u, v) on \mathbb{R}^{2}. We have

$$
\partial_{u}=(1,1,4 u)
$$

and

$$
\partial_{v}=(1,-1,4 v)
$$

Thus, we deduce that at the point $p=\phi(u, v)$ we have

$$
\begin{aligned}
E & =\left\langle\partial_{u}, \partial_{u}\right\rangle_{p}=2+16 u^{2} \\
F & =\left\langle\partial_{u}, \partial_{v}\right\rangle_{p}=16 u v \\
G & =\left\langle\partial_{v}, \partial_{v}\right\rangle_{p}=2+16 v^{2} .
\end{aligned}
$$

In order to compute the form coefficients of the second fundamental form, we need to compute the Gauss map N and the second derivatives of the coordinates of ϕ.

Since X is a regular surface given as level set of a regular value of a smooth function, it is orientable. Thus the Gauss map is well defined. A way to compute it is to compute $\frac{\partial_{u} \wedge \partial_{v}}{\left\|\partial_{u} \wedge \partial_{v}\right\|}$ at the point $p=\phi(u, v)$. From the expression above of ∂_{u} and ∂_{v} we get

$$
\partial_{u} \wedge \partial_{v}=(4 u+4 v, 4 u-4 v,-2) .
$$

The norm of the above vector is $2 \sqrt{8 u^{2}+8 v^{2}+1}$. Thus the choice of N induced by this basis is

$$
N(p)=N(\phi(u, v))=\frac{(2 u+2 v, 2 u-2 v,-1)}{\sqrt{8 u^{2}+8 v^{2}+1}}
$$

and the computation is complete (another possibility to compute N is to consider the versor associated to ∇G at $p=\phi(u, v))$.

The last ingredients we need are the second derivatives of the coordinates of ϕ. As vectors, we get

$$
\begin{aligned}
\frac{\partial^{2} \phi}{\partial^{2} u} & =(0,0,4) \\
\frac{\partial^{2} \phi}{\partial u \partial v} & =(0,0,0) \\
\frac{\partial^{2} \phi}{\partial^{2} v} & =(0,0,4)
\end{aligned}
$$

and so, with the expression of $N \circ \phi$ found above, we get

$$
\begin{aligned}
& e=\left\langle N \circ \phi, \frac{\partial^{2} \phi}{\partial^{2} u}\right\rangle=\frac{-4}{\sqrt{8 u^{2}+8 v^{2}+1}} \\
& f=\left\langle N \circ \phi, \frac{\partial^{2} \phi}{\partial u \partial v}\right\rangle=0 \\
& g=\left\langle N \circ \phi, \frac{\partial^{2} \phi}{\partial^{2} v}\right\rangle=\frac{-4}{\sqrt{8 u^{2}+8 v^{2}+1}} .
\end{aligned}
$$

We can finally compute the Gaussian curvature. We have

$$
K=\frac{e g-f^{2}}{E G-F^{2}}=\left(\frac{16}{8 u^{2}+8 v^{2}+1}\right)\left(\frac{1}{4+32 u^{2}+32 v^{2}}\right)=\frac{4}{\left(8 u^{2}+8 v^{2}+1\right)^{2}}
$$

(4) We know that the mean curvature is given by

$$
H=\frac{1}{2} \frac{e G-2 f F+g E}{E G-F^{2}} .
$$

Thus, with the values of E, F, G, e, f, g computed above, we get

$$
H=\frac{1}{2}\left(\frac{-4\left(4+16\left(u^{2}+v^{2}\right)\right)}{\sqrt{8 u^{2}+8 v^{2}+1}}\right)\left(\frac{1}{4+32 u^{2}+32 v^{2}}\right)=-\frac{2+8\left(u^{2}+v^{2}\right)}{\left(8 u^{2}+8 v^{2}+1\right)^{3 / 2}} .
$$

Exercise 2 Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be defined as

$$
\sigma(t)=\left(\begin{array}{c}
e^{t \sin \alpha} \cos t \\
e^{t \sin \alpha} \sin t \\
e^{t \sin \alpha} \cot \alpha
\end{array}\right)
$$

where $\alpha \in\left(0, \frac{\pi}{2}\right)$ and $\cot \alpha=\frac{\cos \alpha}{\sin \alpha}$.
(1) Prove that σ is a regular curve.
(2) Prove that the support of σ is contained in $C_{a} \cap\{z>0\}$ for some positive a, where C_{a} is the cone of equation $x^{2}+y^{2}=a z^{2}$. Prove that $\sigma(t) \rightarrow(0,0,0)$ as $t \rightarrow-\infty$
(3) Prove that, for every $T \in \mathbb{R}$, the curve $\sigma_{(-\infty, T]}$ is rectifiable.
(4) Find a parametrization of σ by arclength.

Solution. (1) In order to check that σ is regular, we need to check that the vector $\sigma^{\prime}(t)$ is non zero for every $t \in \mathbb{R}$. A direct computation gives

$$
\sigma^{\prime}(t)=e^{t \sin \alpha}\left(\begin{array}{c}
\sin \alpha \cos t-\sin t \\
\sin \alpha \sin t+\cos t \\
\cos \alpha
\end{array}\right)
$$

and we see that the last component is non zero for all $t \in \mathbb{R}$ (since the exponential is always positive and $\cos \alpha>0)$.
(2) Let us denote with $(x(t), y(t), z(t))$ the point $\sigma(t)$. For every $t \in \mathbb{R}$ we have

$$
x(t)^{2}+y(t)^{2}=e^{2 t \sin \alpha}
$$

and

$$
z(t)^{2}=e^{2 t \sin \alpha}(\cot \alpha)^{2},
$$

Thus, the support of σ is contained in the cone C_{a}, with $a=\frac{1}{(\cot \alpha)^{2}}$. whose half-angle at the origin is α.

Since the exponential is positive and $\cot \alpha>0$ for $\alpha \in\left(0, \frac{\pi}{2}\right)$, we have $z(t)>0$ for all $t \in \mathbb{R}$. So, the support is also contained in the half space $\{z>0\}$.

As $t \rightarrow-\infty$, we have $z(t)=e^{t \sin \alpha} \rightarrow 0$. Since the components of the vector $(\cos t, \sin t, \cot \alpha)$ are bounded, we have $\sigma(t) \rightarrow(0,0,0)$ as $t \rightarrow-\infty$, as required.
(3) We need to show that the length L_{T} of $\sigma_{(-\infty, T]}$ is finite. First of all, we need to compute the norm of $\sigma^{\prime}(t)$. From the expression found above, we get

$$
\left\|\sigma^{\prime}(t)\right\|=\sqrt{2} e^{t \sin \alpha}
$$

So, we deduce that

$$
L_{T}=\int_{-\infty}^{T}\left\|\sigma^{\prime}(t)\right\| d t=\int_{-\infty}^{T} \sqrt{2} e^{t \sin \alpha} d t=\frac{\sqrt{2}}{\sin \alpha} e^{T \sin \alpha}
$$

which is finite for every $T \in \mathbb{R}$.
(4) By the computations in the previous item, we can reparametrize σ as $\tilde{\sigma}:[0,+\infty) \rightarrow \mathbb{R}^{3}$, with parameter $s=s(t)=L_{t}$ and $\tilde{\sigma}(0)=(0,0,0)$. We have

$$
\frac{\sqrt{2}}{\sin \alpha} e^{t \sin \alpha}=s
$$

which gives

$$
t=\frac{1}{\sin \alpha} \log \left(\frac{s \sin \alpha}{\sqrt{2}}\right) .
$$

A parametrization by arclength is then given by

$$
\tilde{\sigma}(s)=\sigma(t(s))=\sigma\left(\frac{1}{\sin \alpha} \log \left(\frac{s \sin \alpha}{\sqrt{2}}\right)\right)
$$

which gives

$$
\left.\tilde{\sigma}(s)=\frac{s \sin \alpha}{\sqrt{2}}\binom{\cos \left(\frac{1}{\sin \alpha} \log \left(\frac{s \sin \alpha}{\sqrt{2}}\right)\right.}{\sin \left(\frac{1}{\sin \alpha} \log \left(\frac{s \sin \alpha}{\sqrt{2}}\right)\right.}\right)
$$

Let us check that this parametrization is indeed by arclength. We have

$$
\left.\tilde{\sigma}^{\prime}(s)=\frac{\sin \alpha}{\sqrt{2}}\binom{\cos \left(\frac{1}{\sin \alpha} \log \left(\frac{s \sin \alpha}{\sqrt{2}}\right)\right.}{\sin \left(\frac{1}{\sin \alpha} \log \left(\frac{s \sin \alpha}{\sqrt{2}}\right)\right.}\right)+\frac{1}{\sqrt{2}}\binom{-\sin \left(\frac{1}{\sin \alpha} \log \left(\frac{s \sin \alpha}{\sqrt{2}}\right)\right)}{\cot \alpha}
$$

and so

$$
\left\|\tilde{\sigma}^{\prime}(s)\right\|^{2}=\left(\frac{\sin \alpha}{\sqrt{2}}\right)^{2}\left(1+(\cot \alpha)^{2}\right)+\frac{1}{2}=\frac{1}{2}+\frac{1}{2}=1
$$

