
DIFFERENTIAL GEOMETRY

PARTIAL EXAM

The allowed time is 2 hours. Please justify carefully every answer.

Exercise 1 Let C and P be the subsets of R3 given by the equations

C :=
{

(x, y, z) : x2 + y2 = z2
}

and P := {(x, y, z) : z = 2} .

(1) Prove that C∩P is the support of a closed parametrized regular curve σ : I → R3, for some
interval I ⊂ R.

(2) Find an explicit parametrization of σ by arclength and compute its length.

Exercise 2 Let σ : (0,+∞)→ R3 be given by

σ(t) :=

(
t,

1 + t

t
,
1− t2

t

)
.

(1) Prove that σ is regular.
(2) Compute the curvature of σ.
(3) Compute the torsion of σ.

Exercise 3 Let σ : I → R3 be a regular curve of class C∞. Let

σ(t) = (x(t), y(t), z(t))

be an explicit parametrization of σ and consider the curve γ : I → R3 parametrized by

γ(t) =
σ′(t)

‖σ′(t)‖
=

1

‖ (x′(t), y′(t), z′(t)) ‖
(
x′(t), y′(t), z′(t)

)
.

(1) [More difficult] Prove that γ is regular if and only if σ is biregular (do not assume that
σ is parametrized by arc length here).

(2) Assume now that σ is parametrized by arclength. Prove that also γ is parametrized by
arclength if and only if the curvature κ of σ satisfies κ ≡ 1.
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DIFFERENTIAL GEOMETRY

PARTIAL EXAM

The allowed time is 2 hours. Please justify carefully every answer.

Exercise 1 Let C and P be the subsets of R3 given by the equations

C :=
{

(x, y, z) : x2 + y2 = z2
}

and P := {(x, y, z) : z = 2} .

(1) Prove that C∩P is the support of a closed parametrized regular curve σ : I → R3, for some
interval I ⊂ R.

(2) Find an explicit parametrization of σ by arclength and compute its length.

Solution. (1) The intersection C ∩ P is a circle in R3, of equations{
x2 + y2 = 4

z = 2.

In particular, it is a circle of radius 2. A possible way to write a natural parametrization is
to consider I = [0, 2π] and the map σ : I → R3 given by

σ(t) = (2 cos t, 2 sin t, 2).

The curve σ is regular since σ′(t) = (−2 sin t, 2 cos t, 0) is non zero for all values of t ∈ I.
The curve is closed since σ(0) = (2, 0, 2) = σ(2π).

(2) We have ‖σ′(t)‖ = 2 for every t ∈ I. We thus need to do a change of variables of the form
s = 2t, with s ∈ [0, 4π]. We thus get

σ̃(s) = (2 cos(s/2), 2 sin(s/2), 2).

This is a parametrization of σ by arclength. Indeed, we have σ̃′(s) = (cos(s/2), sin(s/2), 0)
and thus ‖σ̃′‖ = 1, as required. The length of σ̃ (and of σ) is then 4π (which is indeed the
length of a circle of radius 2).

�

Exercise 2 Let σ : (0,+∞)→ R3 be given by

σ(t) :=

(
t,

1 + t

t
,
1− t2

t

)
.

(1) Prove that σ is regular.
(2) Compute the curvature of σ.
(3) Compute the torsion of σ.

Proof. (1) Taking the first derivative of σ we find that

σ′(t) =

(
1,− 1

t2
,− 1

t2
− 1

)
.

Thus, σ is regular as for every t ∈ (0,∞) we have that σ′(t) 6= 0.
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2 PARTIAL EXAM

(2) Taking the second derivative of σ we find

σ′′(t) =

(
0,

2

t3
,

2

t3

)
.

Then we compute that

σ′(t) ∧ σ′′(t) =

(
2

t3
,− 2

t3
,

2

t3

)
,

and so

‖σ′(t) ∧ σ′′(t)‖ =
2
√

3

t3
.

From part (1) we have

‖σ′(t)‖ =

√
2(1 + t2 + t4)

t2
.

Then using the formula

κ(t) =
‖σ′ ∧ σ′′‖
‖σ′‖3

,

we obtain

κ(t) =

√
3 t3√

2(1 + t2 + t4)3/2
.

(3) Calculating the third derivative we obtain

σ′′′(t) =

(
0,− 6

t4
,− 6

t4

)
.

To calculate the torsion we employ the formula

τ(t) =
〈σ′(t) ∧ σ′′(t), σ′′′(t)〉
‖σ′(t) ∧ σ′′(t)‖2

.

We note that

〈σ′ ∧ σ′′, σ′′′〉 =
12

t7
− 12

t7
= 0,

and so τ ≡ 0.
It is also possible to directly observe that the support of σ lies in a plane in R3, and thus

the torsion must necessarily be zero. Indeed, writing σ(t) = (x(t), y(t), z(t)), we can check
that

x(t)− y(t) + z(t) = −1

for every t ∈ (0,+∞). This implies the assertion.
�

Exercise 3 Let σ : I → R3 be a regular curve of class C∞. Let

σ(t) = (x(t), y(t), z(t))

be an explicit parametrization of σ and consider the curve γ : I → R3 parametrized by

γ(t) =
σ′(t)

‖σ′(t)‖
=

1

‖ (x′(t), y′(t), z′(t)) ‖
(
x′(t), y′(t), z′(t)

)
.

(1) [More difficult] Prove that γ is regular if and only if σ is biregular (do not assume that
σ is parametrized by arc length here).

(2) Assume now that σ is parametrized by arclength. Prove that also γ is parametrized by
arclength if and only if the curvature κ of σ satisfies κ ≡ 1.



DIFFERENTIAL GEOMETRY 3

Solution. (1) Recall that, by definition, a curve is regular if the tangent vector is never zero
and biregular if the curvature is never zero. In our case, the curvature κ of σ, is given by

κ =
‖σ′ ∧ σ′′‖
‖σ′‖3

(since we cannot assume that σ is parametrized by arclength for now). In particular, we
have that

σ is not regular at t0 if and only if ∃A such that σ′′(t0) = Aσ′(t0).

Let us look for a similar condition for the regularity of γ. We have

γ′(t0) =
d

dt

σ′

‖σ′‖
=
‖σ′‖2σ′′ − 〈σ′, σ′′〉σ′

‖σ′‖3

where the right hand side is evaluated at t0. Thus, γ is not regular if and only if the
numerator of the last expression is zero. This happens precisely when σ′′ is a multiple of
σ′. This gives the desired equivalence.

(2) Assume now that σ is parametrized by arc length. This means that ‖σ̇(s)‖ = 1 for every s.
In this case, we thus have γ′ = σ̈ and κ = ‖σ̈‖. We thus have

κ ≡ 1 ⇔ ‖σ̈‖ ≡ 1 ⇔ ‖γ′‖ ≡ 1 ⇔ γ is parametrized by arc length

The proof is complete.
�



DIFFERENTIAL GEOMETRY

FINAL EXAM

The allowed time is 3 hours. Please justify carefully every answer, and quote the statements for the lectures
that you use.

Exercise 1 Let X ⊂ R3 be defined as

X :=
{

(x, y, z) ∈ R3 : x2 + y2 = z
}

and let φ : R2 → R3 be given by

φ(u, v) := (u+ v, u− v, 2u2 + 2v2).

(1) Prove that X is a regular surface.
(2) Prove that φ is a global parametrization of X.
(3) Compute the Gaussian curvature of X with respect to the parametrization φ.
(4) Compute the mean curvature of X with respect to the parametrization φ.

Exercise 2 Let σ : R→ R3 be defined as

σ(t) =

 et sinα cos t
et sinα sin t
et sinα cotα


where α ∈

(
0, π2

)
and cotα = cosα

sinα .

(1) Prove that σ is a regular curve.
(2) Prove that the support of σ is contained in Ca ∩ {z > 0} for some positive a, where Ca is

the cone of equation x2 + y2 = az2. Prove that σ(t)→ (0, 0, 0) as t→ −∞
(3) Prove that, for every T ∈ R, the curve σ(−∞,T ] is rectifiable.
(4) Find a parametrization of σ by arclength.
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DIFFERENTIAL GEOMETRY

FINAL EXAM

The allowed time is 3 hours. Please justify carefully every answer, and quote the statements for the lectures
that you use.

Exercise 1 Let X ⊂ R3 be defined as

X :=
{

(x, y, z) ∈ R3 : x2 + y2 = z
}

and let φ : R2 → R3 be given by

φ(u, v) := (u+ v, u− v, 2u2 + 2v2).

(1) Prove that X is a regular surface.
(2) Prove that φ is a global parametrization of X.
(3) Compute the Gaussian curvature of X with respect to the parametrization φ.
(4) Compute the mean curvature of X with respect to the parametrization φ.

Solution. (1) X is the zero level of the function G : R3 → R given by G(x, y, z) = x2 + y2 − z.
Since the preimage of a regular value is a regular surface, it is enough to prove that 0 is a
regular value for G. Recall that this means that no point q in the preimage of 0 is critical,
i.e., satisfies ∇G = 0. Let us compute the gradient of G. We have

∇G(x, y, z) = (2x, 2y,−1).

We see that ∇G never vanishes. In particular, 0 is a regular value and X is a regular
surface.

(2) As X the zero level set of the function G and 0 is regular value for G it suffices to check that
φ(R2) ⊂ X, φ is injective and d(φ)(u,v) is injective for all (u, v) ∈ R2 in order to conclude
that φ is a local parametrization of X.

The first check is immediate: for every (u, v) ∈ R2 we have

(u+ v)2 + (u− v)2 − (2u2 + 2v2) = 0,

which proves that φ(u, v) ∈ X.
For the injectivity of φ it is enough to consider the first two coordinates: it is straight-

forward to check that for every x, y ∈ R2 the system{
u+ v = x

u− v = y

has one and only one solution.
Finally, let us compute the differential dφ. We have

dφ(u,v) =

 1 1
1 −1

4u 4v

 .

The determinant of the minor given by the first two rows is constantly equal to −2. Thus,
the two columns of the matrix representing dφ are always independent, and this proves that
dφ is injective for all (u, v) ∈ R2. This establishes that φ is a local parametrization.
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To see that φ is a global parametrization it suffices to show that X = φ(R2). Since we
have already checked that φ(R2) ⊂ X it suffices to show the opposite inclusion. Indeed for
an arbitrary (x, y, z) ∈ X we may take u = 1

2(x+ y), v = 1
2(x− y) to see that

φ(u, v) = (x, y, z).

This concludes that X = φ(R2) and that φ is a global parametrization of X.
(3) In order to compute the Gaussian curvature we compute the metric coefficients E,F,G and

the form coefficients e, f, g of the first and second fundamental forms with respect to the
parametrization φ.

Let us denote by ∂u and ∂v the tangent vectors induced by φ corresponding to the
coordinates (u, v) on R2. We have

∂u = (1, 1, 4u)

and
∂v = (1,−1, 4v)

Thus, we deduce that at the point p = φ(u, v) we have

E = 〈∂u, ∂u〉p = 2 + 16u2

F = 〈∂u, ∂v〉p = 16uv

G = 〈∂v, ∂v〉p = 2 + 16v2.

In order to compute the form coefficients of the second fundamental form, we need to
compute the Gauss map N and the second derivatives of the coordinates of φ.

Since X is a regular surface given as level set of a regular value of a smooth function,
it is orientable. Thus the Gauss map is well defined. A way to compute it is to compute
∂u∧∂v
‖∂u∧∂v‖ at the point p = φ(u, v). From the expression above of ∂u and ∂v we get

∂u ∧ ∂v = (4u+ 4v, 4u− 4v,−2) .

The norm of the above vector is 2
√

8u2 + 8v2 + 1. Thus the choice of N induced by this
basis is

N(p) = N(φ(u, v)) =
(2u+ 2v, 2u− 2v,−1)√

8u2 + 8v2 + 1
,

and the computation is complete (another possibility to compute N is to consider the versor
associated to ∇G at p = φ(u, v)).

The last ingredients we need are the second derivatives of the coordinates of φ. As
vectors, we get

∂2φ

∂2u
= (0, 0, 4)

∂2φ

∂u∂v
= (0, 0, 0)

∂2φ

∂2v
= (0, 0, 4)

and so, with the expression of N ◦ φ found above, we get

e = 〈N ◦ φ, ∂
2φ

∂2u
〉 =

−4√
8u2 + 8v2 + 1

f = 〈N ◦ φ, ∂
2φ

∂u∂v
〉 = 0

g = 〈N ◦ φ, ∂
2φ

∂2v
〉 =

−4√
8u2 + 8v2 + 1

.

We can finally compute the Gaussian curvature. We have

K =
eg − f2

EG− F 2
=

(
16

8u2 + 8v2 + 1

)(
1

4 + 32u2 + 32v2

)
=

4

(8u2 + 8v2 + 1)2
.
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(4) We know that the mean curvature is given by

H =
1

2

eG− 2fF + gE

EG− F 2
.

Thus, with the values of E,F,G, e, f, g computed above, we get

H =
1

2

(
−4(4 + 16(u2 + v2))√

8u2 + 8v2 + 1

)(
1

4 + 32u2 + 32v2

)
= − 2 + 8(u2 + v2)

(8u2 + 8v2 + 1)3/2
.

�

Exercise 2 Let σ : R→ R3 be defined as

σ(t) =

 et sinα cos t
et sinα sin t
et sinα cotα


where α ∈

(
0, π2

)
and cotα = cosα

sinα .

(1) Prove that σ is a regular curve.
(2) Prove that the support of σ is contained in Ca ∩ {z > 0} for some positive a, where Ca is

the cone of equation x2 + y2 = az2. Prove that σ(t)→ (0, 0, 0) as t→ −∞
(3) Prove that, for every T ∈ R, the curve σ(−∞,T ] is rectifiable.
(4) Find a parametrization of σ by arclength.

Solution. (1) In order to check that σ is regular, we need to check that the vector σ′(t) is non
zero for every t ∈ R. A direct computation gives

σ′(t) = et sinα

 sinα cos t− sin t
sinα sin t+ cos t

cosα


and we see that the last component is non zero for all t ∈ R (since the exponential is always
positive and cosα > 0).

(2) Let us denote with (x(t), y(t), z(t)) the point σ(t). For every t ∈ R we have

x(t)2 + y(t)2 = e2t sinα

and

z(t)2 = e2t sinα(cotα)2,

Thus, the support of σ is contained in the cone Ca, with a = 1
(cotα)2

. whose half-angle at

the origin is α.
Since the exponential is positive and cotα > 0 for α ∈ (0, π2 ), we have z(t) > 0 for all

t ∈ R. So, the support is also contained in the half space {z > 0}.
As t→ −∞, we have z(t) = et sinα → 0. Since the components of the vector (cos t, sin t, cotα)

are bounded, we have σ(t)→ (0, 0, 0) as t→ −∞, as required.
(3) We need to show that the length LT of σ(−∞,T ] is finite. First of all, we need to compute

the norm of σ′(t). From the expression found above, we get

‖σ′(t)‖ =
√

2et sinα.

So, we deduce that

LT =

∫ T

−∞
‖σ′(t)‖dt =

∫ T

−∞

√
2et sinαdt =

√
2

sinα
eT sinα,

which is finite for every T ∈ R.
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(4) By the computations in the previous item, we can reparametrize σ as σ̃ : [0,+∞) → R3,
with parameter s = s(t) = Lt and σ̃(0) = (0, 0, 0). We have

√
2

sinα
et sinα = s

which gives

t =
1

sinα
log

(
s sinα√

2

)
.

A parametrization by arclength is then given by

σ̃(s) = σ(t(s)) = σ

(
1

sinα
log

(
s sinα√

2

))
which gives

σ̃(s) =
s sinα√

2


cos
(

1
sinα log

(
s sinα√

2

))
sin
(

1
sinα log

(
s sinα√

2

))
cotα


Let us check that this parametrization is indeed by arclength. We have

σ̃′(s) =
sinα√

2


cos
(

1
sinα log

(
s sinα√

2

))
sin
(

1
sinα log

(
s sinα√

2

))
cotα

+
1√
2


− sin

(
1

sinα log
(
s sinα√

2

))
cos
(

1
sinα log

(
s sinα√

2

))
0


and so

‖σ̃′(s)‖2 =

(
sinα√

2

)2 (
1 + (cotα)2

)
+

1

2
=

1

2
+

1

2
= 1.
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