Mid-term exam in Algebraic Topology 10 December 2019

The following exercises are independent.

1. Let $B = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$. Show that B is homeomorphic to the quotient space $[0, 1] \times [0, 1] / \sim$ where the projection is

$$\begin{array}{cccc} [0,1]\times [0,1] &\longrightarrow & B \\ (s,t) &\longmapsto & se^{2i\pi t} \end{array}$$

Give the equivalence relation \sim and determine the open sets in the quotient space $[0, 1] \times [0, 1] / \sim$.

- 2. Let $f, g: X \longrightarrow \mathbb{R}^n$ be two continuous maps where \mathbb{R}^n is equipped with the standard topology. Are this maps f and g homotopic?
- 3. A continuous map $f: X \longrightarrow Y$ is an embedding if the map

$$\tilde{f}: X \longrightarrow f(X)$$

is a homeomorphism.

Given a topological space, show that the inclusion of a subspace into the space is an embedding.

- 4. Is the space $\mathbb{R}^n \setminus \{0\}$ simply connected?
- 5. Let $(X, \tau_X), (Y, \tau_Y)$ and (Z, τ_Z) be three topological spaces and $f, g : X \longrightarrow Y \times Z$ two continuous maps. Show that the maps f and g are homotopic iff the maps $p_Y \circ f$ and $p_Y \circ g$ are homotopic and the maps $p_Z \circ f$ and $p_Z \circ g$

COMSATS Final exam in Algebraic Topology 2019

The following exercises are independent.

1. Consider the following map

f

- (a) Show that f is a continuous map.
- (b) Determine $f([0,1] \times [0,1])$, i.e. as a subset of \mathbb{R}^2 .
- (c) Show that $f([0,1] \times [0,1])$ is homeomorphic to the quotient space $[0,1] \times [0,1] / \sim$ where f is the projection.
- (d) Determine the open sets of $f([0, 1] \times [0, 1])$.
- 2. Let f and g be two maps of a singleton to the space X where
 - (a) $X = \mathbb{R}^2 \setminus (\mathbb{Q} \times \{0\})$. Are these two maps homotopic?
 - (b) $X = \mathbb{R}^3 \setminus \{(x, y, z) \mid z = 0\}$. Are these two maps homotopic?
 - (c) $X = \mathbb{R}^3 \setminus \{(x, y, z) \mid y = 0, z = 0\}$. Are these two maps homotopic?
- 3. Given two topological spaces (X, τ_X) and (Y, τ_Y) , we consider the homotopy classes of maps of X to Y.
 - (a) Let Y = [0, 1] as subspace of \mathbb{R} with the standard topology. Show that any two maps of X to Y are homotopic.
 - (b) Suppose that X is path-connected. Determine the homotopy classes of X to Y.
- 4. A space is contractible if the identity map is homotopic to a constant map.
 - (a) Show that [0, 1] and \mathbb{R} with the respectively induced and standard topologies, are contractible.
 - (b) Show that a contractible space is path-connected.
 - (c) Show that if Y is contractible, then for any space X, the maps of X to Y are homotopic.
 - (d) Show that if X is contractible and Y is path-connected, the maps of X to Y are homotopic.