FUNCTIONAL ANALYSIS - IMM

LIST 4: WEAK TOPOLOGIES

Date: 17 March, 2021 Professor: Sahibzada Waleed Noor

The objective of this list is to prove that when a Banach space \mathcal{H} is separable, then the closed unit ball B_1^* of the dual \mathcal{H}^* is *metrizable* in the w^* -topology.

1. Let T_1 and T_2 be two topologies on a set X such that

- (1) X is Hausdorff with respect to T_1 ,
- (2) X is compact with respect to T_2 , and
- (3) $T_1 \subseteq T_2$.

Prove that $T_1 = T_2$. Hint: Show that any T_2 -closed subset F of X is also T_1 -closed.

2. Let $(x_n)_{n \in \mathbb{N}}$ be a countable dense subset of the unit ball B_1 of \mathcal{H} . Let ρ be the weak topology on \mathcal{H}^* induced by the family of evaluations at each x_n

$$\mathcal{F} = \{\hat{x}_n : \mathcal{H}^* \to \mathbb{C} : \hat{x}_n(\phi) = \phi(x_n)\}$$

Show that $\rho \subseteq w^*$ -topology and that a base of neighborhoods for the topology ρ at a point $\phi_0 \in \mathcal{H}^*$ is given by sets of the form

$$V_{\epsilon}(\phi_0; x_1, \dots, x_N) = \{ \phi \in \mathcal{H}^* : |\phi(x_n) - \phi_0(x_n)| < \epsilon \ \forall n = 1, \dots, N \}$$

Hint: Remember \mathcal{F} is the topology of pointwise convergence at each x_n .

3. Prove that ρ is *metrizable* by showing that

$$d(\phi_1, \phi_2) := \sum_{n=1}^{\infty} 2^{-n} \min(1, |\phi_1(x_n) - \phi_2(x_n)|) \quad \text{for } \phi_1, \phi_2 \in \mathcal{H}^*$$

defines a metric on \mathcal{H}^* that generates the topology ρ . *Hint: Use question 2.*

4. Show that the toplogy ρ coincides with the w^* -topology on B_1^* . Therefore B_1^* is a compact metric space in the w^* -topology and hence every sequence in B_1^* has a w^* -convergent subsequence.

Hint: Use questions 1, 2 and 3, the Banach-Alaoglu Theorem, and the fact that metric topologies are Hausdorff.