FUNCTIONAL ANALYSIS - IMM

LIST 3: SEQUENCE SPACES

Date: 10 March, 2021 Professor: Sahibzada Waleed Noor

- 1. Prove that ℓ^{∞} is a Banach space.
- 2. Prove c_0 is a closed subspace of ℓ^{∞} , but c_{00} and ℓ^1 are not closed in ℓ^{∞} .

3. Let $E = \ell^1$, $E^* = \ell^\infty$ and $N = c_0$ where $N^* = E$. Determine $N^\perp = \{\phi \in E : \hat{\phi}(f) = 0 \ \forall \phi \in N\}$

and

$$N^{\perp\perp} = \{ f \in E^* : \hat{f}(\phi) = 0 \quad \forall \ \phi \in N^{\perp} \}.$$

Check that $N^{\perp \perp} \neq N$. (See page 34, lecture 6 for the definitions of $\hat{\phi}$ and \hat{f} .)

4. Let ϕ be a linear functional that is *not* bounded on a Banach space $\mathcal{H}.$ Prove that

$$\phi(B_1) = \mathbb{C}$$

where $B_1 = \{x \in \mathcal{H} : ||x|| \le 1\}$ is the closed unit ball \mathcal{H} .

Hint: Use the fact that $||\phi|| = \infty$ to show that for each $z \in \mathbb{C}$, we can find some $x_0 \in B_1$ with $\phi(x_0) = z$.