FUNCTIONAL ANALYSIS - IMM

LIST 2: LINEAR FUNCTIONALS

Date: 02 March, 2021 Professor: Sahibzada Waleed Noor

1. Show that every linear functional on a Banach space \mathcal{H} is continuous if and only if \mathcal{H} is finite dimensional.

2. Let $\mathcal{H} = \mathcal{C}([0,1])$ with the supremum norm and consider the linear functional $\phi : \mathcal{H} \to \mathbb{C}$ defined by

$$\phi(f) = \int_0^1 f(t)dt$$

Prove that $\phi \in \mathcal{H}^*$ and $||\phi|| = 1$. *Hint: Consider the functions* $f_{\alpha}(t) = t^{\alpha}$ *for* $\alpha > 0$.

3. Let $M \subset \mathcal{H}$ be a linear subspace of a Banach space \mathcal{H} . The annihilator M^{\perp} of M is the subset of \mathcal{H}^* defined by

$$M^{\perp} := \{ \phi \in \mathcal{H}^* : \phi(f) = 0 \ \forall \ f \in M \}.$$

Prove that M^{\perp} is a closed linear subspace of \mathcal{H}^* .

4. Let \mathcal{H} be a Banach space. For each $f \in \mathcal{H}$, we can define a functional $\hat{f} : \mathcal{H}^* \to \mathbb{C}$ on the dual space \mathcal{H}^* by

$$\hat{f}(\phi) = \phi(f) \qquad \forall \ \phi \in \mathcal{H}^*$$

Prove that \hat{f} belongs to $\mathcal{H}^{**} := (\mathcal{H}^*)^*$ (the *second dual* of \mathcal{H}). Show that the map

$$f \longrightarrow \hat{f}$$

is an injective linear map (linear embedding) of \mathcal{H} into \mathcal{H}^{**} .