FUNCTIONAL ANALYSIS - IMM

LIST 1: SPACES OF CONTINUOUS FUNCTIONS

Date: 23 February, 2021 Professor: Sahibzada Waleed Noor

- 1. Let \mathcal{H} be a Banach space. Prove that the following functions are continuous:
 - $a: \mathcal{H} \times \mathcal{H} \to \mathcal{H}$ defined by a(f,g) = f + g,
 - $s: \mathbb{C} \times \mathcal{H} \to \mathcal{H}$ defined by $s(\lambda, f) = \lambda f$, and
 - $n: \mathcal{H} \to \mathbb{R}^+$ defined by n(f) = ||f||.

Hint: Use the norms ||(f,g)|| := ||f|| + ||g|| on $\mathcal{H} \times \mathcal{H}$ and $||(\lambda, f)|| := |\lambda| + ||f||$ on $\mathbb{C} \times \mathcal{H}$ to obtain $\epsilon - \delta$ proofs for continuity.

2. Let X be a compact Hausdorff space. Prove that $\mathcal{C}(X)$ is finite dimensional if and only if X is finite.

3. Let $(f_n)_{n \in \mathbb{N}} \subset \mathcal{C}(0,1)$ be the sequence of functions defined by $f_n(x) = x^n$. Prove that f_n converges to 0 pointwise, but does *not* converge in $\mathcal{C}(0,1)$.

4. Let $\mathcal{F} \subset \mathcal{C}([-\pi,\pi])$ be the collection of all *finite Fourier series*

$$f(x) = \sum_{n=0}^{N} (a_n \sin nx + b_n \cos nx)$$

where $a_n, b_n \in \mathbb{R}$. Show that the derivative map $D : \mathcal{F} \to \mathcal{F}$ defined by D(f) = f' is *not* continuous on \mathcal{F} with the sup-norm metric.

Hint: Find a sequence $(f_n)_{n \in \mathbb{N}} \subset \mathcal{F}$ such that $f_n \to 0$, but $f'_n \not\to 0$ in the sup-norm.

5. Prove that the map $I: \mathcal{C}([a,b]) \to \mathcal{C}([a,b])$ for $a, b \in \mathbb{R}$ defined by

$$I(f)(x) = \int_{a}^{x} f(t)dt$$

is continuous (with respect to the sup-norm metric).