Ω
probabilities

$$
\mathbb{P}: P(\Omega) \rightarrow[0,1]
$$

$$
\mathbb{P}\left(\tilde{A}^{u^{\Omega}}\right): \sum_{\omega \in A} p(\omega) \longleftarrow p
$$

Conditional probability
ex. what is the probability that a cricket math is cancelled?

- what is the probability that a cricket math is cancelled if toolay it's raining?
def (cond probability)
A, B events

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A, B)}{\mathbb{P}(B)}
$$

3.1. $\mathbb{P}(B)>0$ prob. on A conditioned on B
prop B event $\mathbb{P}(B)>0$
then $P(\Omega) \longrightarrow[0,1]$
$A \longmapsto \mathbb{P}(A \mid B)$
is a probability on Ω.
prof A
prop (law of total probability)
$(\Omega, \sigma(\Omega), \mathbb{P})$
$\left(B_{i}\right)_{i}$ a (finite or countable) partition $\left\{\begin{array}{l}\bigcup_{i c \pm} B_{i}=\Omega \\ B_{i} \cap B_{j}=\varnothing \text { is }\end{array}\right.$ of Ω.

Then
(1) $\mathbb{P}(A)=\sum \mathbb{P}\left(A \cap B_{i}\right)$

Moreover, if $\mathbb{P}\left(B_{i}\right)>0$, then
(2) $\mathbb{P}(A)=\sum_{i} \mathbb{P}\left(A \mid B_{i}\right) \mathbb{P}\left(B_{i}\right)$
$\operatorname{proof}(1) A=A \cap \Omega=A \cap\left(\bigcup_{i \in L} B_{i}\right)=\bigcup_{i \in I} \underbrace{}_{\text {al }}(\underbrace{}_{\text {digaint }} A_{i})$
(2) apply definition of
conditional probability

$$
\mathbb{P}\left(A, B_{i}\right)=\mathbb{P}\left(A \mid B_{i}\right) \mathbb{P}\left(B_{i}\right)
$$

Theorem (Bayes' formula)
A, B events, $\mathbb{P}(A), \mathbb{P}(B)>0$

$$
\mathbb{P}(B \mid A)=\frac{\mathbb{P}(A \mid B) \mathbb{P}(B)}{\mathbb{P}(A)}
$$

proof

$$
\begin{gathered}
\mathbb{P}(B \mid A) \mathbb{P}(A)=\mathbb{P}(B \cap A)=\mathbb{P}(A \mid B) \mathbb{P}(B) \\
\text { def. of } \\
\text { conditional probability }
\end{gathered}
$$

example test to detect a virus

- if virus present: 94% position
- if virus not present: 2\% positive.
assume that 4 people out of 10000 have the virus.

Question: if one person tests positive, what is the probability that they advally have
the virus?

$$
\begin{aligned}
& A=\text { "test is positive" } \\
& B=\text { "individual is mich" } \\
& \mathbb{P}(B \mid A)=\frac{\mathbb{P}(A \mid B) \mathbb{P}(B)}{\mathbb{P}(A)} \\
& \quad=\frac{\mathbb{P}(A \mid B) \mathbb{P}(B)}{\mathbb{P (A | B) P (B)}+\underbrace{\mathbb{P}\left(A \mid B^{c}\right)}_{0.02} \underbrace{\mathbb{P}\left(B^{c}\right)}_{1-0.0004=0.9976}} \simeq 0.02
\end{aligned}
$$

Independence

$$
\mathbb{P}(A \mid B):=\frac{\mathbb{P}\left(A_{n} B\right)}{\mathbb{P}(B)}
$$

$$
\text { if } \mathbb{P}(A \mid B)=\mathbb{P}(A) \text {, then } \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

def (independence of two events)
A, B are independent if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

example - extract card from a poler deck (52 cards)

$$
\begin{aligned}
& A=" \text { card is "4 suits, } 13 \text { curds each } \\
& B=\text { "card is a three"" }
\end{aligned}
$$

$\triangle A, B$ are independent

- throw two G-sided dice one ot a tine A= " sum is $7^{\prime \prime}, B="$ first die is $3^{"}$

$$
\begin{aligned}
& \begin{array}{c}
\text { second } \\
1 \\
\text { firm) }(2,1)(3,1) \\
(1)
\end{array} \\
& (3,4): \mathbb{P}(A)=\mathbb{P}((3,4),(4,3),(1,6),(6,1),(2,5),(5,2)) \\
& =\frac{6}{36} \\
& \mathbb{P}(B)=\mathbb{P}((3,1),(3,2) \ldots \quad(3,6))=\frac{6}{36} \\
& \Rightarrow \mathbb{P}(A) \mathbb{P}(B)=\frac{1}{36}
\end{aligned}
$$

more generally,
def A family of events $\left(A_{i}\right)_{i \sigma I}$ is said to be independent if

$$
\mathbb{P}\left(\bigcap_{i \in J} A_{i}\right)=\prod_{i \in J} \mathbb{P}\left(A_{i}\right)
$$

for every subset $J \subseteq I$.
example throw two 6-sided dice

$$
\Omega=\{1,2 \ldots, 6\}^{2}=\{(1,1),(1,2) \ldots,(6,6)\}
$$

\mathbb{P} uniform probability

$$
\mathbb{P}((1,1))=\frac{1}{36}=\mathbb{P}((1,2))=\mathbb{P}((1,3))=\ldots \mathbb{P}((6,6))
$$

$A=\{$ the second die is 1,2 or 5$\}$
$A \quad B=\{$ the second die is 4,5 or 6$\}$ write tho $\begin{aligned} & \text { as } \\ & \text { subsets of } \Omega\end{aligned}=\{$ the sum of the two dice is 9$\}$

$$
\begin{aligned}
& \text { deck if } \mathbb{P}(A \cap B \cap C)=\mathbb{P}(A) \mathbb{P}(B) \mathbb{P}(C) \text { ? } \\
& \mathbb{P}(A \cap B \cap C)=\mathbb{P}((4,5))=\frac{1}{36} \\
& \mathbb{P}(A)=\frac{1}{2}=\mathbb{P}(B) \\
& \mathbb{P}(C)=\mathbb{P}((3,6),(6,3),(4,5),(5,4))=\frac{4}{36}=\frac{1}{9} \\
& \mathbb{P}(A) \mathbb{P}(B) \mathbb{P}(C)=\frac{1}{36} \\
& \mathbb{P}(A \cap B)=\mathbb{P}(\text { second die is } 5)=\frac{1}{6} \\
& \mathbb{P}(A) \mathbb{P}(B)=\frac{1}{4} \frac{\text { s }}{}
\end{aligned}
$$

Combinatorics
focus on $\frac{\text { uniform }}{\omega \in \Omega}$ probability
$\Omega \quad \begin{aligned} & \text { finite } \\ & \text { sample }\end{aligned}$ sample
space

$$
\begin{aligned}
& \mathbb{P}(\{\omega\})=\frac{1}{|\Omega|} \\
& \mathbb{P}\left(\begin{array}{l}
A \\
n \\
\Omega
\end{array}\right)=\frac{|A|}{|\Omega|} \text { need these determine }
\end{aligned}
$$

common situations

1) arrangements w_{i} th repetitious
there is a set A and I have to extract k elements fromit, and each time I put the elemat I extracted bash.
prop the number of arrangements with repetitions is n^{k}
2) arrangements without repetitions
there is a set A and I have to extract k elements framit, and each time I DON'T put the element I extracted bask.
prop number of arrangements without repetitions
is

why?
permutation group $S_{n} \quad n=k \leadsto\left|S_{n}\right|=n$!
3) Combinations
def A finite set, the combinations of k elemats extracted from A are all the subsets of A of cardinality k.
prop the number of comidinations is

$$
C_{n, k}=\binom{n}{k}:=\frac{n!}{k!(n-k)!}
$$

proof $\quad C_{n, k}=\frac{D_{n, n}}{k!}$

$$
\begin{aligned}
& \underbrace{(3,1)}_{-\frac{(1,2,3)}{(2,1,3)}} \\
& A \cap B=\varnothing
\end{aligned}
$$

two 6-sided dice
$A=$ "the first die is 6"
$B=$ "the sum of the two dice is 12 "

$$
\begin{aligned}
& \mathbb{P}(A)=\frac{1}{6} \\
& \mathbb{P}(B)=\mathbb{P}((6,6))=\frac{1}{36} \\
& \mathbb{P}(A \cap B)=\frac{1}{36}=\mathbb{P}((6,6))
\end{aligned}
$$

