Gianmarco Bet, gianmarco.bet @unifi.it
Probability
Probabilistic model

1) Ω sample space (countable)
en -1 dice throw $\Omega=\{1, \ldots, 6\}$

- arrival time of the bus

$$
\Omega=[0, \infty)
$$

. 2 dice throws? $\mathrm{Al}^{\text {s }}$
2) events

$$
Z=P(\Omega)
$$

all subsets of Ω
special events: - ϕ impossible

- Ω certain
examples $\quad \Omega=\{1, \ldots, 6\}$

$$
\begin{aligned}
& A=(\text { "even number" })=\{2,4,6\} \subseteq \Omega \\
& B=\left(\text { "multiple of } 3^{\prime \prime}\right)=\{3,6\} \\
& C=\left(\text { "even number multiple of } 3^{\prime \prime}\right)=A \cap B=\{6\}
\end{aligned}
$$

$\frac{\text { statements }}{A \text { and } B}$	
A set operations	
A or B	$A \cap B$
$\underline{\text { not } A}$	$A \cup B$
	A^{c}

3) probability
mathematically, $\mathbb{P}: P(\Omega) \rightarrow[0,1]$

$$
A \longmapsto \mathbb{P}(A) \in[0,1]
$$

def (axioms of probability) Ω countable set

$$
\mathbb{P}: P(\Omega) \longrightarrow[0,1]
$$

such that

$$
\text { (Ai) } \quad \mathbb{P}(\Omega)=1
$$

$\left(\sigma\right.$-additivity) (A 2) $\left(A_{i}\right)_{i} \subseteq O(\Omega)$ such that

$$
A_{i} \cap A_{\jmath}=\varnothing \quad i, j=1, \ldots
$$

then

$$
\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)
$$

example

$$
\begin{aligned}
& \Omega=\{1, \ldots, 6\} \\
& \mathbb{P}(i)=\frac{1}{6} \quad i=1, \ldots, 6 \\
& \mathbb{P}(\{1,2\})=\mathbb{P}(\{1\})+\mathbb{P}(\{2\})=\frac{1}{6}+\frac{1}{6}=\frac{1}{3}
\end{aligned}
$$

$(\Omega, F=P(\Omega), \mathbb{P})$ is called a (discrete) probability space
properties $(\Omega, \neq \mathbb{P})$. Then
(i) $\mathbb{P}(\phi)=0$
(ii) finite additivity

$$
\begin{aligned}
& \left(A_{i}\right)_{i=1}^{n} \quad A_{i} \cap A_{j}=\varnothing \\
& \text { then } \\
& \mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)
\end{aligned}
$$

$$
\begin{gathered}
i, j=1, \ldots n \\
i \neq j
\end{gathered}
$$

proof (i) $\mathbb{P}(\phi)=\sum_{i=1}^{\infty} \mathbb{P}(\phi) \Rightarrow \mathbb{P}(\phi)=0$

$$
\left.\begin{array}{ll}
(A 2) & B_{1}=\phi, B_{2}=\phi \ldots \\
\phi=\phi \cup \phi \ldots & B_{i} \cap B_{j}=\phi
\end{array}\right\} \Rightarrow \begin{aligned}
& \mathbb{P}\left(\bigcup_{i=1}^{\infty} \phi\right) \\
& =\sum_{i=1}^{\infty} \mathbb{P}(\phi)
\end{aligned}
$$

(ii) $A_{1}, \ldots, A_{n}, \phi, \ldots \phi$.

$$
\mathbb{P}\left(A_{1} \cup \ldots \cup A_{n} \cup \phi \cup \ldots\right)=\sum_{(A 2)}^{n} \mathbb{P} \mathbb{P}\left(A_{i}\right)+\underbrace{\sum_{i=1}^{\infty} \mathbb{P}(\phi)}_{=0} J
$$

in particular, $A \cap B=\varnothing$
then $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)$
def (probability mass function, discrete density) Ω non-empty countable set

$$
\begin{array}{ll}
& p: \Omega \rightarrow[0,1] \\
\text { st. } & \sum_{w \in \Omega} p(w)=1 .
\end{array}
$$

prop (部iscrete $\begin{gathered}\text { density }\end{gathered} \Rightarrow$ probability)
Let p be a dd. Define for $A \in Q(\Omega)$

$$
\mathbb{P}(A)=\sum_{\omega \in A} p(\omega)
$$

Then, $\mathbb{P}($.$) satisfies (A 1),(A 2)$ in other words, \mathbb{P} is a probability proof (A2) $\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\left.\right|_{\omega \in{\underset{e n}{i n}}_{\infty} A_{i}} ^{\text {def of } \mathbb{P}} \sum_{i=1}^{\infty}\left(\sum_{\omega \in A_{i}} P(\omega)\right)$

$$
(A 1) A \quad \sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right) \quad \underset{\mathbb{P}\left(A_{i}\right)}{ }
$$

to summarize, Ω countable set
there is a bijection between probabilities and d d's on Ω.

proof θ
example uniform probability
Ω finite set. Define

$$
\mathbb{P}(A)=\frac{|A|}{|\Omega|}
$$

this is a probability A verify that it satisfies (A1), (A2)
$d d \sim p(u)=\frac{1}{|\Omega|}$

$$
\begin{aligned}
& \mathbb{P}(\Omega)=1 \\
& \sum_{\omega \in \Omega}^{\prime \prime} \frac{p(\omega)}{\overline{\prime \prime}}=1 \\
& |\Omega| p=1 \quad \Rightarrow \quad p=\frac{1}{|\Omega|}
\end{aligned}
$$

properties $\quad(\Omega, \mathcal{F}, \mathbb{P})$

$$
A, B \subseteq \Omega \quad, \quad A \subseteq B
$$

then $\quad \mathbb{P}(B)=\mathbb{P}(B \backslash A)+\mathbb{P}(A)$

$$
\Rightarrow \quad(a) \quad \mathbb{P}(A) \leqslant \mathbb{P}(B)
$$

(b) $\mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A)$
proof

$$
\begin{aligned}
& \mathbb{P}(B)=\mathbb{1}(A \cup B(B \backslash A)) \\
& A \subseteq B \\
&=\mathbb{P}(A)+\mathbb{P}(B \backslash A) \\
& \text { finite additivity }
\end{aligned}
$$

prop (inclusion-enclusion formula)

$$
\begin{array}{cc}
A_{1}, \ldots A_{n} \subseteq \Omega \quad \text { any sequence } \\
\mathbb{P}\left(A_{1} \cup \ldots \cup A_{n}\right)=\sum_{k=1}^{n} \sum_{\substack{J \leq[1 \ldots n\} \\
|J|=k}}(-1)^{k+1} \mathbb{P}\left(\bigcap_{i \in J} A_{i}\right)
\end{array}
$$

proof by induction.
examples: $\quad n=2$

$$
\mathbb{P}\left(A_{1} \cup A_{2}\right)=\mathbb{P}\left(A_{1}\right)+\mathbb{P}\left(A_{2}\right)-\mathbb{P}\left(A_{\cap} B\right)
$$

prop (continuity of probability)

$$
\mathbb{P}: O(\Omega) \rightarrow[0,1] \quad \text { s.t. it satisfies. }\left(A_{1}\right)
$$

then, the following ave equivalent finite additivity
(i) \mathbb{P} satisfies σ-additivity

(ii)
for

$$
\begin{aligned}
& \text { for any increasing sequence of } \\
& \text { events, ie. }\left(A_{i}\right)_{i=1}^{\infty} \text { st. } A_{1} \subseteq A_{2} \subseteq A_{3} \ldots \\
& \mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\lim _{i \rightarrow \infty} \mathbb{P}\left(A_{i}\right)
\end{aligned}
$$

(iii) $\left(A_{i}\right)_{i=1}^{\infty}$ decreasing sequence of events

$$
\mathbb{P}\left(\bigcap_{i=1}^{\infty} \mathbb{A}_{i}\right)=\lim _{i \rightarrow \infty} \mathbb{P}\left(\mathbb{A}_{i}\right)
$$

proof

$$
\begin{aligned}
& (i) \Rightarrow \text { (ii) } \quad B_{1}:=A_{1}, B_{2}:=A_{2} \backslash A_{1} \\
& B_{n}:=A_{n} \backslash A_{n-1}
\end{aligned}
$$

$$
\left.\begin{array}{l}
A_{3} \\
\left(l A_{1} A_{2}\right. \\
200
\end{array}\right)
$$

notice that, $\bigcup_{i=1}^{n} B_{i}=A_{n}$

$$
\text { - } \bigcup_{i=1}^{\infty} B_{i}=\bigcup_{i=1}^{\infty} A_{i}
$$

$$
\begin{aligned}
\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right) & =\mathbb{P}\left(\bigcup_{i=1}^{\infty} B_{i}\right)=\sum_{\substack{i=1 \\
\sigma-a d d i t i v i t y \\
\text { since } \\
B_{i} \cap B_{j}=\phi \\
\text { its }}}^{\infty} \mathbb{P}\left(B_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mathbb{P}\left(B_{i}\right)= \\
& =\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)
\end{aligned}
$$

(ii) \Rightarrow (i) $\left(A_{i}\right)_{i=1}^{\infty} \quad$ disjoint events
$A_{1} 0^{A_{2}} \quad B_{1}=A_{1} \quad, B_{2}=A_{1} \cup A_{2}, \ldots B_{n}=\bigcup_{i=1}^{u} A_{i}$
$D_{A_{3}} \quad\left(B_{i}\right)_{i=1}^{\infty} \quad$ increasing,$\quad \bigcup_{i=1}^{\infty} A_{i}=\bigcup_{i=1}^{\infty} B_{i}$

$$
\begin{aligned}
& \mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\mathbb{P}\left(\bigcup_{i=1}^{\infty} B_{i}\right)=\lim _{i} \mathbb{P} \mathbb{P}\left(B_{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i n}\left(A_{i}\right)\right.
\end{aligned}
$$

finite additivity
corollary $(A \cdot)_{i=1}^{\infty}$ events

$$
\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)
$$

