Commutative Algebra

Sarfraz Ahmad and Volkmar Welker

Department of Mathematics COMSATS University, Lahore and Fachbereich Mathematik und Informatik Philipps-Universität Marburg November/December 2020

Marburg - 23. November 2020

- Classes Tuesday 1pm-3pm and Friday 7pm-9pm
- Problem Sets
 - Every two weeks.
 - Will be discussed in one of the classes.
- Final exam, end of December

Definition (Commutative ring with 1)

A commutative ring with 1 is a non-empty set R with a

- Addition $+: R \times R \rightarrow R$ and a
- Multiplication $* : R \times R \rightarrow R$

such that

- R with + is a commutative group,
- * is associative and commutative,
- there is a neutral element 1 for the multiplication,
- a(b+c) = ab + ac for all $a, b, c \in R$,

Rings Revisited

• $\mathbb{Z},\,\mathbb{Q},\,\mathbb{R},\,\mathbb{Q},\,\mathbb{C}$ are rings with the usual addition and multiplication

Example (Polynomial ring)

For a ring R is R[x] the ring of polynomials with coefficients in R in the indeterminate x.

•
$$f = \sum_{i=0}^{n} a_i x^i$$
, $g = \sum_{i=0}^{m} b_i x^i$ (assume $n \le m$).
 $f = g \Leftrightarrow a_i = b_i, i = 0, ..., n \text{ and } b_i = 0$
for $n < i \le m$.
• $f = \sum_{i=0}^{n} a_i x^i$
 $\deg(f) = \begin{cases} -\infty & \text{if } f = 0 \\ \max\{i \mid a_i \ne 0\} & \text{otherwise} \end{cases}$

is called degree of f.

Example (Polynomial ring)

- an $f \in R[x]$ or $f(x) \in R[x]$ has a representation as $f = a_0 + a_1x + \cdots + a_nx^n$ for some $n \ge 0$.
- the representation is not unique.
- if we demand that $a_n \neq 0$ then the representation becomes unique for $f \neq 0$.

Definition (Field)

A commutative ring R with 1 is called a field if every non-zero element has a multiplicative inverse.

- a commutative ring with 1 is a field if and only if $R \setminus \{0\}$ is a commutative group.
- examples of fields \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{F}_p ,....
- \mathbb{Z} ist not a field, R[x] is not a field.
- $\bullet\,$ we will usually $\mathbb K$ to denote a field

Let $f, g \in \mathbb{K}[x]$ then

- $\deg(f + g) \leq \max\{\deg(f), \deg(g)\}.$
- $\deg(f \cdot g) = \deg(f) + \deg(g)$.

Convention: We set

$$-\infty + n = n + -\infty = -\infty + -\infty = -\infty < n$$

for all $n \in \mathbb{N}$.

Theorem (Division with remainder)

Let $f, g \in \mathbb{K}[x]$ and $g \neq 0$. Then there are polynomials $q, r \in \mathbb{K}[x]$ such that $f = g \cdot q + r$ and $\deg(r) < \deg(g)$.

Beweis.

• $\deg(f) < \deg(g)$: then set q = 1 and r = f.

•
$$n = \deg(f) \ge m = \deg(g)$$
:

$$f=\sum_{i=0}^n a_i x^i, \quad g:=\sum_{i=0}^m b_i x^i.$$

We prove the assertion by induction on n - m. Induction Base: n = mSet $q = \frac{a_n}{b_m}$ and $r = f - g \frac{a_n}{b_m}$ then f = g q + r and $\deg(r) < \deg(g)$.

Beweis.

Induction Step: n > mSet $q_1 = \frac{a_n}{b_m} x^{n-m}$ and $r_1 = f - \frac{a_n}{b_m} x^{n-m} g$. Then

$$f = g q_1 + r_1$$
 and $n_1 = \deg(r_1) < \deg(f)$.

If $\deg(r_1) < \deg(g)$ then we are done othwise $0 \le n_1 - m < n - m$. By induction hypothesis we have q_2 and r_2 scuh that

$$r_1 = g q_2 + r_2$$
 and $\deg(r_2) < \deg(g) = m$.

$$f = g q_1 + r_1 = g q_1 + g q_2 + r_2 = g (q_1 + q_2) + r_2$$

For $q = q_1 + q_2$ and $r = r_2$ we are done.

Example

$$f = 2x^{4} + x^{3} + 2x^{2} + 1 \text{ and } g = x^{2} + 2x + 1.$$

$$2x^{4} + x^{3} + 2x^{2} + 1 = (x^{2} + 2x + 1)(2x^{2} - 3x + 6) - 9x - 5$$

$$2x^{4} - 4x^{3} - 2x^{2}$$

$$-3x^{3}$$

$$3x^{3} + 6x^{2} + 3x$$

$$6x^{2} + 3x + 1$$

$$-6x^{2} - 12x - 6$$

In the polynomial division f = g q + r with deg(r) < deg(g) we call r the remainder or rest.

 $q = 2x^2 - 3x + 6$ and r = -9x - 5.

-9x - 5

Definition

Let $f, g \in \mathbb{K}[x]$ and $g \neq 0$. We say that g divides f if there is q poylnomial $q \in \mathbb{K}[x]$ with g q = f. We write g | f.

Definition

Let $f, g \in \mathbb{K}[x]$, $f, g \neq 0$. We say that h is the greatest common divisor of f and g if

- h|f, h|g and
- if for some $h' \in \mathbb{K}[x]$ we have h'|f and h'|g then h'h|h

We write gcd(f, g) for the greates common divisior of f and g.

 \rightarrow have to show that gcd(f, g) exists.

Definition (Euclidian Algorithm)

```
Let f, g \in \mathbb{K}[x] and g \neq 0.
  • Set b_0 = f, b_1 = g, i = 1
  ٩
(A) Division with remainder b_{i-1} = b_i q_i + r_i
  • b_{i+1} = r_i.
  • Set i = i + 1
  • if b_i = r_{i-1} \neq 0 then goto (A)
  ۲
  • Return b_{i-1}
```

Equivalent formulation:

$$f = b_0 = b_1 q_1 + r_1 = g q_1 + r_1$$

$$b_1 = b_2 q_2 + r_2 = r_1 q_2 + r_2$$

$$b_2 = b_3 q_3 + r_3 = r_2 q_3 + r_3$$

$$\vdots$$

$$b_{i-2} = b_{i-1} q_{i-1} + r_{i-1} = r_{i-2} q_{i-1} + r_{i-1}$$

$$b_{i-1} = b_i q_i + 0 = b_i q_i + 0$$

 $b_i = \gcd(f, g).$

For two polynomials $f, g \in \mathbb{K}[x]$, $f, g \neq 0$ the Euclidian algorithm computes gcd(f, g).

Beweis.

Assume the Euclidian algorithm returns b_i . We claim bd induction on j from j = i to 1 that for $b_0 = f$, $b_1 = g$:

$$b_i = \gcd(b_j, b_{j-1})$$

For
$$i = 1$$
: $b_i = \text{gcd}(b_1, b_0) = \text{gcd}(g, f)$
Induction base : $j = i$

•
$$b_{i-1} = b_i q_i \Rightarrow b_i | b_{i,1}, b_i$$

•
$$h|b_{i-1}, h|b_i \Rightarrow h|b_i$$

 $\Rightarrow b_i = \gcd(b_i, b_{i-1})$

イロト 不得下 イヨト イヨト

Beweis.

Induction step: $j \ge 1$ By induction assumption: $b_i = \text{gcd}(b_j, b_{j-1})$.

$$a_{j-1} = b_{j-2} = b_{j-1}q_{j-1} + r_{j-1} = b_{j-1}q_{j-1} + b_j$$

•
$$b_i = \gcd(b_j, b_{j-1}) \Rightarrow b_i | b_{j-2}.$$

• $h | b_{j-2}, h | b_{j-1} \Rightarrow h | b_j \Rightarrow h | \gcd(b_j, b_{j-1}) = b_i$
 $\Rightarrow b_i = \gcd(b_{j-2}, b_{j-1}).$

Example

Corollary

For $f, g \in \mathbb{K}[x]$, $f, g \neq 0$, we have that gcd(f, g) exists and is unique up to multiplication with $a \in \mathbb{K} \setminus \{0\}$. In addition there are $u, v \in \mathbb{K}[x]$ such that gcd(f, g) = uf + vg.

Beweis.

Follows directly from the Euclidian algorithm.

Let $f \in \mathbb{K}[x]$ then f has a multiplicative inverse if and only if f = a for some $a \in \mathbb{K} \setminus \{0\}$.

Beweis.

If $a \in \mathbb{K} \setminus \{0\}$ then $a^{-1} \in \mathbb{K}$ thus $a a^{-1} = 1$ and a has a multiplicative inverse in $\mathbb{K}[x]$. Let g be a multiplicative inverse of f: $\Rightarrow 1 = f g$ $\Rightarrow 0 = \deg(1) = \deg(fg) = \deg(f) + \deg(g)$. $\deg(f), \deg(g) \in \mathbb{N} \cup \{-\infty\} \Rightarrow \deg(f), \deg(g) = 0 \Rightarrow f = a$ for some $a \in \mathbb{K} \setminus \{0\}$.

Definition

Let $f \in \mathbb{K}[x]$ and deg $(f) \ge 1$. Then we say f is irreducible if $g \mid f$ implies that g = a f for some $a \in \mathbb{K} \setminus \{0\}$ or g = a for some $a \in \mathbb{K} \setminus \{0\}$.

Example

- x b is irreducible for all b
- $\deg(f) = 1 \Rightarrow f$ irreducible.
- $x^2 + 1$ is irreducible in $\mathbb{R}[x]$ but not in $\mathbb{C}[x]$
- f irreducible \Rightarrow af irreducible for any $a \in \mathbb{K} \setminus \{0\}$

Every polynomial $f \in \mathbb{K}[x]$ of degree deg $(f) \ge 1$ is a product of irreducible polynomials.

Beweis.

Induction of deg(f). Induction base: $\deg(f) = 1$ \Rightarrow f is irreduible \Rightarrow assertion Induction step: $\deg(f) > 1$ Case: f is irreducible Then the assertion is trivial. Case: f is not irreducible Then there is g such that g|f and $g \neq af \Rightarrow f = gh$ for a $\mathsf{polynomial}\ h\ \mathsf{with}\ \mathsf{deg}(h) \geqslant 1 \to \mathsf{deg}(g), \mathsf{deg}(h) < \mathsf{deg}(f) \xrightarrow{\mathsf{Induction}}$ g and h are products of irrecible polynomials \Rightarrow assertion.

Let g be an irreducible polynomial and h_1, \ldots, h_s polynomials such that $g|h_1 \cdots h_s$ then $g|h_i$ for some $1 \le i \le s$.

Beweis.

Induction of s: Induction Base: s = 1, 2. s = 1: the the assertion is trivial. s = 2: $g|h_1h_2$ Beweis. If $g \not|h_1 \xrightarrow{g \text{ irreducible}} 1 = \gcd(g, h_1) \Rightarrow \text{ exist}$ polynomials u and v such that $1 = ug + vh_1 \Rightarrow$ $h_2 = (ug + vh_1)h_2 = ugh_2 + vh_1h_2) \xrightarrow{g|h_1h_2} g|h_2$.

Beweis.

Theorem

Let $f \in \mathbb{K}[x]$ be of degree deg $(f) \ge 1$. If $f = g_1 \cdots g_r = h_1 \cdots h_s$ for irreducible polynomials g_1, \ldots, g_r and h_1, \ldots, h_s then r = s and after renumbering we have $g_i = a_i h_i$ for some $a_i \in \mathbb{K} \setminus \{0\}$, $i = 1, \ldots, r = s$.

Beweis.

 $\begin{array}{l} f = g_1 \cdots g_r = h_1 \cdots h_s \Rightarrow g_r | h_1 \cdots h_s \xrightarrow{g_r \text{ irreducible}} \text{ there is } i \text{ such} \\ \text{that } g_r | h_i \xrightarrow{h_i \text{ irreducible}} h_i = a_i g_i \text{ for some } a_i \in \mathbb{K} \setminus \{0\}. \\ \text{Without restriction of generality : } i = s. \\ \text{It follows that } g_1 \cdots g_{r-1} = a_r h_1 \cdots h_{s-1} \\ \text{Since } a_i h_1 \text{ is irreducible we get by induction that } r = s \text{ and} \\ g_i = a_i h_i \text{ for some } a_i \in \mathbb{K} \setminus \{0\}. \end{array}$

Generalization:

Definition

For variables/indeterminates x_1, \ldots, x_n we call $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ for $\alpha_1, \ldots, \alpha_n \in \mathbb{N}$ a monomial.

For
$$\alpha = (\alpha_1, \cdots, \alpha_n) \in \mathbb{N}^n$$
 we write \underline{x}^{α} for $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$.

Definition

The $\mathbb{K}[x_1, \ldots, x_n]$ is the \mathbb{K} -vectorspace with basis $\{\underline{x}^{\alpha} \mid \alpha \in \mathbb{N}^n\}$. We call $f \in \mathbb{K}[x_1, \ldots, x_n]$ or $f(x_1, \ldots, x_n) \in \mathbb{K}[x_1, \ldots, x_n]$ a polynomial.

As a consequence we can write every $f \in \mathbb{K}[x_1, \ldots, x_n]$ uniquely as

$$f = \sum_{\alpha \in \mathbb{N}^n} c_{\alpha} \cdot \underline{\mathsf{x}}^{\alpha}$$

for $c_{\alpha} \in \mathbb{K}$ and all but finitely many $c_{\alpha} = 0$.

Theorem

The polynomial ring $\mathbb{K}[x_1, \ldots, x_n]$ with the vectorspace addition and the multiplication

$$\Big(\sum_{\alpha\in\mathbb{N}}c_{\alpha}\underline{x}^{\alpha}\Big)\cdot\Big(\sum_{\alpha\in\mathbb{N}}c_{\alpha}'\underline{x}^{\alpha}\Big)=\sum_{\alpha\in\mathbb{N}}\Big(\sum_{\beta,\beta'\in\mathbb{N}^{n}\atop \beta+\beta'=\alpha}c_{\beta}c_{\beta'}'\Big)\underline{x}^{\alpha}$$

is a (commutative) ring.

Beweis.

One checks that

$$\mathbb{K}[x_1,\ldots,x_n] = (\cdots(\mathbb{K}[x_1])[x_2])\cdots)[x_n].$$