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Formalities

Classes Tuesday 1pm-3pm and Friday 7pm-9pm
Problem Sets

Every two weeks.
Will be discussed in one of the classes.

Final exam, end of December
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Rings Revisited

Definition (Commutative ring with 1)

A commutative ring with 1 is a non-empty set R with a
Addition + : R × R → R and a
Multiplication ∗ : R × R → R

such that
R with + is a commutative group,
∗ is associative and commutative,
there is a neutral element 1 for the multiplication,
a(b + c) = ab + ac for all a, b, c ∈ R ,
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Rings Revisited

Z, Q, R, Q, C are rings with the usual addition and
multiplication

Example (Polynomial ring)

For a ring R is R[x ] the ring of polynomials with coefficients in R
in the indeterminate x .

f =
∑n

i=0 aix
i , g =

∑m
i=0 bix

i (assume n 6 m).

f = g ⇔ ai = bi , i = 0, . . . , n and bi = 0

for n < i 6 m.
f =
∑n

i=0 aix
i

deg(f ) =

{
−∞ if f = 0

max{i | ai 6= 0} otherwise

is called degree of f .
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Rings Revisited

Example (Polynomial ring)

an f ∈ R[x ] or f (x) ∈ R[x ] has a representation as
f = a0 + a1x + · · · anxn for some n > 0.
the representation is not unique.
if we demand that an 6= 0 then the representation becomes
unique for f 6= 0.
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Rings Revisited

Definition (Field)

A commutative ring R with 1 is called a field if every non-zero
element has a multiplicative inverse.

a commutative ring with 1 is a field if and only if R \ {0} is a
commutative group.
examples of fields Q, R, C, Fp,....
Z ist not a field, R[x ] is not a field.
we will usually K to denote a field
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Polynomial ring over a field

Lemma
Let f , g ∈ K[x ] then

deg(f + g) 6 max{deg(f ), deg(g)}.
deg(f · g) = deg(f ) + deg(g).

Convention: We set

−∞+ n = n +−∞ = −∞+−∞ = −∞ < n

for all n ∈ N.
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Polynomial ring over a field

Theorem (Division with remainder)

Let f , g ∈ K[x ] and g 6= 0. Then there are polynomials q, r ∈ K[x ]
such that f = g · q + r and deg(r) < deg(g).

Beweis.
deg(f ) < deg(g): then set q = 1 and r = f .
n = deg(f ) > m = deg(g):

f =

n∑
i=0

aix
i , g :=

m∑
i=0

bix
i .

We prove the assertion by induction on n −m.
Induction Base: n = m
Set q = an

bm
and r = f − g an

bm
then

f = g q + r and deg(r) < deg(g).
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Polynomial ring over a field

Beweis.
Induction Step: n > m
Set q1 = an

bm
xn−m and r1 = f − an

bm
xn−m g .

Then
f = g q1 + r1 and n1 = deg(r1) < deg(f ).

If deg(r1) < deg(g) then we are done othwise 0 6 n1 −m < n−m.
By induction hypothesis we have q2 and r2 scuh that

r1 = g q2 + r2 and deg(r2) < deg(g) = m.

→ f = g q1 + r1

= g q1 + g q2 + r2

= g (q1 + q2) + r2

For q = q1 + q2 and r = r2 we are done.
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Polynomial ring over a field

Example

f = 2x4 + x3 + 2x2 + 1 and g = x2 + 2x + 1.

2x4 + x3 + 2x2 + 1 =
(
x2 + 2x + 1

) (
2x2 − 3x + 6

)
− 9x − 5

− 2x4 − 4x3 − 2x2

− 3x3

3x3 + 6x2 + 3x
6x2 + 3x + 1

− 6x2 − 12x − 6
− 9x − 5

q = 2x2 − 3x + 6 and r = −9x − 5.

In the polynomial division f = g q + r with deg(r) < deg(g) we call
r the remainder or rest.
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Polynomial ring over a field

Definition
Let f , g ∈ K[x ] and g 6= 0. We say that g divides f if there is q
poylnomial q ∈ K[x ] with g q = f . We write g | f .

Definition
Let f , g ∈ K[x ], f , g 6= 0. We say that h is the greatest common
divisor of f and g if

h|f , h|g and
if for some h ′ ∈ K[x ] we have h ′|f and h ′|g then h ′h|h

We write gcd(f , g) for the greates common divisior of f and g .

→ have to show that gcd(f , g) exists.
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Polynomial ring over a field

Definition (Euclidian Algorithm)

Let f , g ∈ K[x ] and g 6= 0.
Set b0 = f , b1 = g , i = 1

(A) Division with remainder bi−1 = bi qi + ri

bi+1 = ri .
Set i = i + 1
if bi = ri−1 6= 0 then goto (A)

Return bi−1
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Polynomial ring over a field

Equivalent formulation:

f = b0 = b1 q1 + r1 = g q1 + r1

b1 = b2 q2 + r2 = r1 q2 + r2

b2 = b3 q3 + r3 = r2 q3 + r3
...
...

bi−2 = bi−1 qi−1 + ri−1 = ri−2 qi−1 + ri−1

bi−1 = bi qi + 0 = bi qi + 0

bi = gcd(f , g).
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Polynomial ring over a field

Lemma
For two polynomials f , g ∈ K[x ], f , g 6= 0 the Euclidian algorithm
computes gcd(f , g).

Beweis.
Assume the Euclidian algorithm returns bi .
We claim bd induction on j from j = i to 1 that for b0 = f , b1 = g :

bi = gcd(bj , bj−1)

For i = 1 : bi = gcd(b1, b0) = gcd(g , f )
Induction base : j = i

bi−1 = biqi ⇒ bi |bi ,1, bi

h|bi−1, h|bi ⇒ h|bi

⇒ bi = gcd(bi , bi−1
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Polynomial ring over a field

Beweis.
Induction step: j > 1
By induction assumption: bi = gcd(bj , bj−1).

aj−1 = bj−2 = bj−1qj−1 + rj−1 = bj−1qj−1 + bj

bi = gcd(bj , bj−1) ⇒ bi |bj−2.
h|bj−2, h|bj−1 ⇒ h|bj ⇒ h| gcd(bj , bj−1) = bi

⇒ bi = gcd(bj−2, bj−1).

15 / 25



Polynomial ring over a field

Example

f = (x − 1)(x − 1)(x2 + 1) and g = (x − 1)(x + 1)(x + 1)

x4 − 2x3 + 2x2 − 2x + 1 =
(
x3 + x2 − x − 1

)
·
(
x − 3

)
+
(
6x2 − 4x − 2

)
x3 + x2 − x − 1 =

(
6x2 − 4x − 2

)
·
( 1

6x + 5
18

)
+
( 4

9x − 4
9

)
6x2 − 4x − 2 =

( 4
9x − 4

9

)
·

( 27
2 x + 9

2

)
+ 0

gcd(f , g) =
9
4
(x − 1).

Corollary

For f , g ∈ K[x ], f , g 6= 0, we have that gcd(f , g) exists and is
unique up to multiplication with a ∈ K \ {0}. In addtion there are
u, v ∈ K[x ] such that gcd(f , g) = u f + v g .

Beweis.
Follows directly from the Euclidian algorithm.
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Polynomial ring over a field

Lemma
Let f ∈ K[x ] then f has a multiplicative inverse if and only if f = a
for some a ∈ K \ {0}.

Beweis.

If a ∈ K \ {0} then a−1 ∈ K thus a a−1 = 1 and a has a
multiplicative inverse in K[x ].
Let g be a multiplicative inverse of f :

⇒ 1 = f g

⇒ 0 = deg(1) = deg(fg) = deg(f ) + deg(g).

deg(f ), deg(g) ∈ N ∪ {−∞} ⇒ deg(f ), deg(g) = 0 ⇒ f = a for
some a ∈ K \ {0}.
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Polynomial ring over a field

Definition
Let f ∈ K[x ] and deg(f ) > 1. Then we say f is irreducible if g | f
implies that g = a f for some a ∈ K \ {0} or g = a for some
a ∈ K \ {0}.

Example
x − b is irreducible for all b
deg(f ) = 1 ⇒ f irreducible.
x2 + 1 is irreducible in R[x ] but not in C[x ]
f irreducible ⇒ af irreducible for any a ∈ K \ {0}
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Polynomial ring over a field

Lemma
Every polynomial f ∈ K[x ] of degree deg(f ) > 1 is a product of
irreducible polynomials.

Beweis.
Induction of deg(f ).
Induction base: deg(f ) = 1
⇒ f is irreduible ⇒ assertion

Induction step: deg(f ) > 1
Case: f is irreducible
Then the assertion is trivial.

Case: f is not irreducible
Then there is g such that g |f and g 6= a f ⇒ f = g h for a

polynomial h with deg(h) > 1 → deg(g), deg(h) < deg(f )
Induction
=====⇒

g and h are products of irrecible polynomials ⇒ assertion.
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Polynomial ring over a field

Lemma
Let g be an irreducible polynomial and h1, . . . , hs polynomials such
that g |h1 · · · hs then g |hi for some 1 6 i 6 s.

Beweis.
Induction of s:

Induction Base: s = 1, 2.
s = 1: the the assertion is trivial.
s = 2: g |h1h2 Beweis. If g 6 |h1

g irreducible
=======⇒ 1 = gcd(g , h1) ⇒ exist

polynomials u and v such that 1 = u g + v h1 ⇒
h2 = (u g + v h1)h2 = u g h2 + v h1h2)

g |h1h2
===⇒ g |h2.
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Polynomial ring over a field

Beweis.
Induction Step: s > 2.
g |h1 · · · hs = (h1 · · · hs−1)hs

InductionBase
========⇒ g |h1 · · · hs−1 or g |hs

Induction
=====⇒ g |hi for some 1 6 i 6 s.

Theorem
Let f ∈ K[x ] be of degree deg(f ) > 1. If f = g1 · · · gr = h1 · · · hs
for irreducible polynomials g1, . . . , gr and h1, . . . , hs then r = s and
after renumbering we have gi = aihi for some ai ∈ K \ {0},
i = 1, . . . , r = s.
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Polynomial ring over a field

Beweis.

f = g1 · · · gr = h1 · · · hs ⇒ gr |h1 · · · hs
gr irreducible
=======⇒ there is i such

that gr |hi
hi irreducible
=======⇒ hi = aigi for some ai ∈ K \ {0}.

Without restriction of generality : i = s.

It follows that g1 · · · gr−1 = arh1 · · · hs−1

Since aih1 is irreducible we get by induction that r = s and
gi = aihi for some ai ∈ K \ {0}.
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Polynomial Rings over a Field

Generalization:

Definition
For variables/indeterminates x1, . . . , xn we call xα1

1 · · · xαn
n for

α1, . . . ,αn ∈ N a monomial.

For α = (α1, · · · ,αn) ∈ Nn we write xα for xα1
1 · · · xαn

n .
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Polynomial Rings over a Field

Definition
The K[x1, . . . , xn] is the K-vectorspace with basis {xα | α ∈ Nn}.

We call f ∈ K[x1, . . . , xn] or f (x1, . . . , xn) ∈ K[x1, . . . , xn] a
polynomial.

As a consequence we can write every f ∈ K[x1, . . . , xn] uniquely as

f =
∑
α∈Nn

cα · xα

for cα ∈ K and all but finitely many cα = 0.
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Polynomial Rings over a Field

Theorem
The polynomial ring K[x1, . . . , xn] with the vectorspace addition
and the multiplication(∑

α∈N
cαxα

)
·
(∑

α∈N
c ′
αx

α
)
=
∑
α∈N

( ∑
β,β ′∈Nn
β+β ′=α

cβc
′
β ′

)
xα

is a (commutative) ring.

Beweis.
One checks that

K[x1, . . . , xn] = (· · · (K[x1])[x2]) · · · )[xn].
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