Commutative Algebra

Sarfraz Ahmad and Volkmar Welker

Department of Mathematics
COMSATS University, Lahore
and
Fachbereich Mathematik und Informatik
Philipps-Universitat Marburg
November/December 2020

Marburg — 23. November 2020

1/25



Formalities

@ Classes Tuesday 1pm-3pm and Friday 7pm-9pm
@ Problem Sets

e Every two weeks.
e Will be discussed in one of the classes.

o Final exam, end of December
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Rings Revisited

Definition (Commutative ring with 1)

A commutative ring with 1 is a non-empty set R with a
@ Addition +: R x R — R and a
@ Multiplication x: R x R — R

such that
@ R with + is a commutative group,
@ * is associative and commutative,
@ there is a neutral element 1 for the multiplication,
@ a(b+c)=ab+acforall a, b ceR,
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Rings Revisited

e Z,Q, R, Q, C are rings with the usual addition and
multiplication
Example (Polynomial ring)

For a ring R is R[x] the ring of polynomials with coefficients in R
in the indeterminate x.

o f=Y" ax,g=Y",bx" (assume n < m).
f=g<a=bj,i=0,...,nand by =0
forn<i < m.
o f=31"qax

—00 if f=0
deg(f) = { max{/ | a; 20} otherwise

is called degree of f.
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Rings Revisited

Example (Polynomial ring)

@ an f € R[x] or f(x) € R[x] has a representation as
f=ag+aix+---apx" for some n > 0.

@ the representation is not unique.

o if we demand that a, # 0 then the representation becomes
unique for f # 0.
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Rings Revisited

Definition (Field)

A commutative ring R with 1 is called a field if every non-zero
element has a multiplicative inverse.

@ a commutative ring with 1 is a field if and only if R\ {0} is a
commutative group.

o examples of fields Q, R, C, Fp,....
@ Z ist not a field, R[x] is not a field.

e we will usually K to denote a field
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Polynomial ring over a field

Let f, g € K[x] then
o deg(f + g) < max{deg(f), deg(g)}.
o deg(f - g) = deg(f) + deg(g).

Convention: We set
—00+n=n+—00=—-00+—00=—00<n

for all n € N.
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Polynomial ring over a field

Theorem (Division with remainder)

Let f, g € K[x] and g ## 0. Then there are polynomials q, r € K[x]
such that f = g - q+ r and deg(r) < deg(g).

Beweis.

o deg(f) < deg(g): then set g=1and r = 1.

o n=deg(f) > m=deg(g):

n m
f:Za;xi, g::Zb;xi.
i=0 i=0

We prove the assertion by induction on n — m.
n=m
Set g =32 and r = f — g 3= then

f=gq+rand deg(r) < deg(g).
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Polynomial ring over a field

Beweis.

n>m
Set qr=¢2x""Tandnn =f— 2 x"""g.
Then

f=gq +n and ny =deg(r) < deg(f).
If deg(r1) < deg(g) then we are done othwise 0 < n; —m < n— m.

By induction hypothesis we have g» and r» scuh that

rn=gqx+ r and deg(r) < deg(g) = m.

—>f=gCI1+r1
=gq1t+gq+nr
=gl +q)+n

For g = g1 + g» and r = r» we are done. O o




Polynomial ring over a field

f=2x*+x3+2x>+1and g=x2+2x+1.
2x* 4+ x3 + 2x2 +1:(X2+2x+1) (2X2—3x+6)—9X—5
—2x* —4x3 —2x?
—3x3
3x3 +6x% +3x
6x2 +3x+1
—6x°>—12x—6
—9x—5
g=2x>—3x+6and r = —9x —5.

In the polynomial division f = g g + r with deg(r) < deg(g) we call
r the remainder or rest.
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Polynomial ring over a field

Let f,g € K[x] and g # 0. We say that g divides f if there is q
poylnomial g € K[x] with g g = f. We write g | f.

| A

Definition
Let f,g € K[x], f, g # 0. We say that h is the greatest common
divisor of f and g if
e h|f, hlg and
o if for some h’ € K[x] we have h’|f and h’|g then h'h|h
We write ged(f, g) for the greates common divisior of f and g.

A\

— have to show that ged(f, g) exists.
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Polynomial ring over a field

Definition (Euclidian Algorithm)

Let 1, g € K[x] and g # 0.
@Setbp=Ff,by=g,i=1
°

(A) Division with remainder b;_1 = b; q; + r;

Seti=i+1

if bj = ri_1 # 0 then goto (A)

A)
o b,'+1 = r.
"]

(*]
(*]
(*]

Return b;_1
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Polynomial ring over a field

Equivalent formulation:

f=by=biqi+n=gq+n
bi=byg+n=ngp+n
by =b3qzs+rn=rng+n

bio=bi_1qi—1+ri—1="ri—2qi—1+ri—1
bi1=biqi+0=0big+0

b; = gcd(f, g).
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Polynomial ring over a field

For two polynomials f, g € Klx], f, g # 0 the Euclidian algorithm
computes ged(f, g).

Beweis.

Assume the Euclidian algorithm returns b;.
We claim bd induction on j from j =i to 1 that for by = f, by = g:

b: = ged(by, by_1)
For i=1: b; = gcd(by, bg) = ged(g, f)
j=1i
@ bi_1 = biqi = bilbj1, bi
o hlbi_1, hlb; = hlb;
= b; = ged(b;, bi—1 U
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Polynomial ring over a field

j=1
By induction assumption: b; = ged(b;, bj—1).

aj—1=bj2=>bj-1q9-1+r-1=>b-19;-1+b;
@ b= ng(bj, bj_l) = b,‘|bj_2.
-] h|bj_2, h|bj_1 = h|bj = h| ng(bj, bj_l) = b;
= b; = ng(bJ;Q, bjfl). L]
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Polynomial ring over a field

SEE

f=(x—1(x—-1)(x*+1)and g = (x—1)(x+1)(x+1)
=23 +22 —2x+1=(3+x2—x—1)- (x—3) + (6x> —4x —2)
X3+X2—X—1:(6X2—4X—2)'(%X+%)+(%X—g)
o —ti=2= (3x=9) - (Fx+)) +0

ged(F, ) = 5 (x— 1)

Corollary

For f,g € K[x], f,g # 0, we have that gcd(f, g) exists and is
unique up to multiplication with a € K\ {0}. In addtion there are
u,v € K[x] such that gcd(f,g) =uf+vg.

| \

Beweis.

Follows directly from the Euclidian algorithm.




Polynomial ring over a field

Let f € K[x] then f has a multiplicative inverse if and only if f = a
for some a € K\ {0}.

Beweis.

If ac K\ {0} then a ! € Kthusaa !=1and ahasa
multiplicative inverse in K[x].
Let g be a multiplicative inverse of f:

=1=fg
= 0 = deg(1) = deg(fg) = deg(f) + deg(g).

deg(f), deg(g) € NU{—o0} = deg(f),deg(g) =0 = f = a for
some a € K\ {0}. ]
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Polynomial ring over a field

Definition

Let f € K[x] and deg(f) > 1. Then we say f is irreducible if g|f

implies that g = af for some a € K\ {0} or g = a for some
ae K\{0}

@ x — b is irreducible for all b

@ deg(f) =1 = f irreducible.
@ x2+ 1 is irreducible in R[x] but not in C[x]
o f irreducible = af irreducible for any a € K\ {0}
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Polynomial ring over a field

Every polynomial f € K[x] of degree deg(f) > 1 is a product of
irreducible polynomials.

Beweis.

Induction of deg(f).
deg(f) =1
= f is irreduible = assertion
deg(f) > 1
Case: f is irreducible
Then the assertion is trivial.

Case: f is not irreducible
Then there is g such that g|f and g #af = f =gh for a

polynomial h with deg(h) > 1 — deg(g), deg(h) < deg(f) Lewion
g and h are products of irrecible polynomials = assertion. Ol
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Polynomial ring over a field

Let g be an irreducible polynomial and hy, ..., hs polynomials such
that glhy - - - hs then glh; for some 1 < i < s.

Beweis.

Induction of s:

s=1,2.
s = 1: the the assertion is trivial. _
s =2: glhihy Beweis. If g fhy % 1 =gcd(g, h1) = exist
polynomials v and v such that 1l =ug+ v h; =

h1 h
h2:(ug+vh1)h2:ugh2+vh1h2)g|:12>g|h2. ]

v
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Polynomial ring over a field

Beweis.

s> 2.
glhy - hg = (hy -+ he_1)hy 222ONBIE oihy .. he_y or glhs

Induction

glh; for some 1 < j < s. O

| |

Theorem

Let f € K[x] be of degree deg(f) > 1. If f =g1---g, = hy--- hs
for irreducible polynomials gy, . . ., g and hy, ..., hs then r = s and
after renumbering we have g; = a;h; for some a; € K\ {0},
i=1,..., r=s
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Polynomial ring over a field

Beweis.

irreducible ..
there is i such

f.:gl"'gr.:hll'"hs = gilh--hs &
that g, |h; Lduc'bli h; = a;g; for some a; € K\ {0}.
Without restriction of generality : i = s.

It follows that gy ---gr—1 = arh1 -+ hs_1

Since a;jh; is irreducible we get by induction that r = s and
gi = a;h; for some a; € K\ {0}. O]
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Polynomial Rings over a Field

Generalization:

Definition
For variables/indeterminates x, . .., x, we call x;* - .- x%n for
1 n
x1,...,%, € N a monomial.
For o« = (&1, , &) € N” we write x* for xXt ... x%n,
1 n EaY 1 n
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Polynomial Rings over a Field

Definition
The K[xy, ..., x,] is the K-vectorspace with basis {x* | « € N"}.

We call f € K[xy,..., x5 or f(x1,...,xn) € Klxq,...,x,] a

polynomial.
As a consequence we can write every f € K[xg, ..., x,] uniquely as
f= Z Co - XX
oxeN”?

for ¢ € K and all but finitely many ¢, = 0.
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Polynomial Rings over a Field

The polynomial ring K[x, ..., Xn] with the vectorspace addition
and the multiplication

<Z caz“) : <Z c&g") = Z ( Z CfiC[ls/)Z(x

xeN xeN €N  B,p’eNn
B+B/=c

is a (commutative) ring.

Beweis.

One checks that
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