Commutative Algebra

Sarfraz Ahmad and Volkmar Welker

Department of Mathematics COMSATS University, Lahore
and
Fachbereich Mathematik und Informatik
Philipps-Universität Marburg
November/December 2020

Marburg - 23. November 2020

- Classes Tuesday 1pm-3pm and Friday 7pm-9pm
- Problem Sets
- Every two weeks.
- Will be discussed in one of the classes.
- Final exam, end of December

Rings Revisited

Definition (Commutative ring with 1)

A commutative ring with 1 is a non-empty set R with a

- Addition $+: R \times R \rightarrow R$ and a
- Multiplication $*: R \times R \rightarrow R$
such that
- R with + is a commutative group,
- * is associative and commutative,
- there is a neutral element 1 for the multiplication,
- $a(b+c)=a b+a c$ for all $a, b, c \in R$,

Rings Revisited

- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{Q}, \mathbb{C}$ are rings with the usual addition and multiplication

Example (Polynomial ring)

For a ring R is $R[x]$ the ring of polynomials with coefficients in R in the indeterminate x.

- $f=\sum_{i=0}^{n} a_{i} x^{i}, g=\sum_{i=0}^{m} b_{i} x^{i}$ (assume $n \leqslant m$).

$$
f=g \Leftrightarrow a_{i}=b_{i}, i=0, \ldots, n \text { and } b_{i}=0
$$

for $n<i \leqslant m$.

- $f=\sum_{i=0}^{n} a_{i} x^{i}$

$$
\operatorname{deg}(f)=\left\{\begin{array}{cc}
-\infty & \text { if } f=0 \\
\max \left\{i \mid a_{i} \neq 0\right\} & \text { otherwise }
\end{array}\right.
$$

is called degree of f.

Rings Revisited

Example (Polynomial ring)

- an $f \in R[x]$ or $f(x) \in R[x]$ has a representation as $f=a_{0}+a_{1} x+\cdots a_{n} x^{n}$ for some $n \geqslant 0$.
- the representation is not unique.
- if we demand that $a_{n} \neq 0$ then the representation becomes unique for $f \neq 0$.

Rings Revisited

Definition (Field)

A commutative ring R with 1 is called a field if every non-zero element has a multiplicative inverse.

- a commutative ring with 1 is a field if and only if $R \backslash\{0\}$ is a commutative group.
- examples of fields $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_{p}, \ldots$
- \mathbb{Z} ist not a field, $R[x]$ is not a field.
- we will usually \mathbb{K} to denote a field

Polynomial ring over a field

Lemma

Let $f, g \in \mathbb{K}[x]$ then

- $\operatorname{deg}(f+g) \leqslant \max \{\operatorname{deg}(f), \operatorname{deg}(g)\}$.
- $\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)$.

Convention: We set

$$
-\infty+n=n+-\infty=-\infty+-\infty=-\infty<n
$$

for all $n \in \mathbb{N}$.

Polynomial ring over a field

Theorem (Division with remainder)

Let $f, g \in \mathbb{K}[x]$ and $g \neq 0$. Then there are polynomials $q, r \in \mathbb{K}[x]$ such that $f=g \cdot q+r$ and $\operatorname{deg}(r)<\operatorname{deg}(g)$.

Beweis.

- $\operatorname{deg}(f)<\operatorname{deg}(g)$: then set $q=1$ and $r=f$.
- $n=\operatorname{deg}(f) \geqslant m=\operatorname{deg}(g)$:

$$
f=\sum_{i=0}^{n} a_{i} x^{i}, \quad g:=\sum_{i=0}^{m} b_{i} x^{i}
$$

We prove the assertion by induction on $n-m$.
Induction Base: $n=m$
Set $q=\frac{a_{n}}{b_{m}}$ and $r=f-g \frac{a_{n}}{b_{m}}$ then

$$
f=g q+r \text { and } \operatorname{deg}(r)<\operatorname{deg}(g)
$$

Polynomial ring over a field

Beweis.

Induction Step: $n>m$
Set $q_{1}=\frac{a_{n}}{b_{m}} x^{n-m}$ and $r_{1}=f-\frac{a_{n}}{b_{m}} x^{n-m} g$.
Then

$$
f=g q_{1}+r_{1} \text { and } n_{1}=\operatorname{deg}\left(r_{1}\right)<\operatorname{deg}(f)
$$

If $\operatorname{deg}\left(r_{1}\right)<\operatorname{deg}(g)$ then we are done othwise $0 \leqslant n_{1}-m<n-m$. By induction hypothesis we have q_{2} and r_{2} scuh that

$$
r_{1}=g q_{2}+r_{2} \text { and } \operatorname{deg}\left(r_{2}\right)<\operatorname{deg}(g)=m
$$

$$
\rightarrow f=g q_{1}+r_{1}
$$

$$
=g q_{1}+g q_{2}+r_{2}
$$

$$
=g\left(q_{1}+q_{2}\right)+r_{2}
$$

For $q=q_{1}+q_{2}$ and $r=r_{2}$ we are done.

Example

$$
\begin{aligned}
& \quad f=2 x^{4}+x^{3}+2 x^{2}+1 \text { and } g=x^{2}+2 x+1 . \\
& \frac{2 x^{4}+x^{3}+2 x^{2} \quad+1=\left(x^{2}+2 x+1\right)\left(2 x^{2}-3 x+6\right)-9 x-5}{-2 x^{4}-4 x^{3}-2 x^{2}} \frac{-3 x^{3}}{\frac{3 x^{3}+6 x^{2}+3 x}{6 x^{2}+3 x+1}} \\
& \frac{-6 x^{2}-12 x-6}{-9 x-5} \\
& q=2 x^{2}-3 x+6 \text { and } r=-9 x-5 .
\end{aligned}
$$

In the polynomial division $f=g q+r$ with $\operatorname{deg}(r)<\operatorname{deg}(g)$ we call r the remainder or rest.

Polynomial ring over a field

Definition

Let $f, g \in \mathbb{K}[x]$ and $g \neq 0$. We say that g divides f if there is q poyInomial $q \in \mathbb{K}[x]$ with $g q=f$. We write $g \mid f$.

Definition

Let $f, g \in \mathbb{K}[x], f, g \neq 0$. We say that h is the greatest common divisor of f and g if

- $h|f, h| g$ and
- if for some $h^{\prime} \in \mathbb{K}[x]$ we have $h^{\prime} \mid f$ and $h^{\prime} \mid g$ then $h^{\prime} h \mid h$ We write $\operatorname{gcd}(f, g)$ for the greates common divisior of f and g.
\rightarrow have to show that $\operatorname{gcd}(f, g)$ exists.

Polynomial ring over a field

Definition (Euclidian Algorithm)

Let $f, g \in \mathbb{K}[x]$ and $g \neq 0$.

- Set $b_{0}=f, b_{1}=g, i=1$
-

(A) Division with remainder $b_{i-1}=b_{i} q_{i}+r_{i}$

- $b_{i+1}=r_{i}$.
- Set $i=i+1$
- if $b_{i}=r_{i-1} \neq 0$ then goto (A)
-
- Return b_{i-1}

Polynomial ring over a field

Equivalent formulation:

$$
\begin{aligned}
& f=b_{0}=b_{1} q_{1}+r_{1}=g q_{1}+r_{1} \\
& b_{1}=b_{2} q_{2}+r_{2}=r_{1} q_{2}+r_{2} \\
& b_{2}=b_{3} q_{3}+r_{3}=r_{2} q_{3}+r_{3} \\
& \quad: \\
& b_{i-2}=b_{i-1} q_{i-1}+r_{i-1}=r_{i-2} q_{i-1}+r_{i-1} \\
& b_{i-1}=b_{i} q_{i}+0=b_{i} q_{i}+0
\end{aligned}
$$

$$
b_{i}=\operatorname{gcd}(f, g)
$$

Polynomial ring over a field

Lemma

For two polynomials $f, g \in \mathbb{K}[x], f, g \neq 0$ the Euclidian algorithm computes $\operatorname{gcd}(f, g)$.

Beweis.

Assume the Euclidian algorithm returns b_{i}.
We claim bd induction on j from $j=i$ to 1 that for $b_{0}=f, b_{1}=g$:

$$
b_{i}=\operatorname{gcd}\left(b_{j}, b_{j-1}\right)
$$

For $i=1: b_{i}=\operatorname{gcd}\left(b_{1}, b_{0}\right)=\operatorname{gcd}(g, f)$
Induction base : $j=i$

- $b_{i-1}=b_{i} q_{i} \Rightarrow b_{i} \mid b_{i, 1}, b_{i}$
- $h\left|b_{i-1}, h\right| b_{i} \Rightarrow h \mid b_{i}$
$\Rightarrow b_{i}=\operatorname{gcd}\left(b_{i}, b_{i-1}\right.$

Polynomial ring over a field

Beweis.

Induction step: $j \geqslant 1$
By induction assumption: $b_{i}=\operatorname{gcd}\left(b_{j}, b_{j-1}\right)$.

$$
a_{j-1}=b_{j-2}=b_{j-1} q_{j-1}+r_{j-1}=b_{j-1} q_{j-1}+b_{j}
$$

- $b_{i}=\operatorname{gcd}\left(b_{j}, b_{j-1}\right) \Rightarrow b_{i} \mid b_{j-2}$.
- $h\left|b_{j-2}, h\right| b_{j-1} \Rightarrow h\left|b_{j} \Rightarrow h\right| \operatorname{gcd}\left(b_{j}, b_{j-1}\right)=b_{i}$
$\Rightarrow b_{i}=\operatorname{gcd}\left(b_{j-2}, b_{j-1}\right)$.

Polynomial ring over a field

Example

$$
\begin{aligned}
& f=(x-1)(x-1)\left(x^{2}+1\right) \text { and } g=(x-1)(x+1)(x+1) \\
& x^{4}-2 x^{3}+2 x^{2}-2 x+1=\left(x^{3}+x^{2}-x-1\right) \cdot(x-3)+\left(6 x^{2}-4 x-2\right) \\
& x^{3}+x^{2}-x-1=\left(6 x^{2}-4 x-2\right) \cdot\left(\frac{1}{6} x+\frac{5}{18}\right)+\left(\frac{4}{9} x-\frac{4}{9}\right) \\
& 6 x^{2}-4 x-2=\left(\frac{4}{9} x-\frac{4}{9}\right) \cdot\left(\frac{27}{2} x+\frac{9}{2}\right)+0 \\
& \operatorname{gcd}(f, g)=\frac{9}{4}(x-1) .
\end{aligned}
$$

Corollary

For $f, g \in \mathbb{K}[x], f, g \neq 0$, we have that $\operatorname{gcd}(f, g)$ exists and is unique up to multiplication with $a \in \mathbb{K} \backslash\{0\}$. In addtion there are $u, v \in \mathbb{K}[x]$ such that $\operatorname{gcd}(f, g)=u f+v g$.

Beweis.

Follows directly from the Euclidian algorithm.

Polynomial ring over a field

Lemma

Let $f \in \mathbb{K}[x]$ then f has a multiplicative inverse if and only if $f=a$ for some $a \in \mathbb{K} \backslash\{0\}$.

Beweis.

If $a \in \mathbb{K} \backslash\{0\}$ then $a^{-1} \in \mathbb{K}$ thus $a a^{-1}=1$ and a has a multiplicative inverse in $\mathbb{K}[x]$.
Let g be a multiplicative inverse of f :
$\Rightarrow 1=f g$

$$
\Rightarrow 0=\operatorname{deg}(1)=\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)
$$

$\operatorname{deg}(f), \operatorname{deg}(g) \in \mathbb{N} \cup\{-\infty\} \Rightarrow \operatorname{deg}(f), \operatorname{deg}(g)=0 \Rightarrow f=a$ for some $a \in \mathbb{K} \backslash\{0\}$.

Polynomial ring over a field

Definition

Let $f \in \mathbb{K}[x]$ and $\operatorname{deg}(f) \geqslant 1$. Then we say f is irreducible if $g \mid f$ implies that $g=a f$ for some $a \in \mathbb{K} \backslash\{0\}$ or $g=a$ for some $a \in \mathbb{K} \backslash\{0\}$.

Example

- $x-b$ is irreducible for all b
- $\operatorname{deg}(f)=1 \Rightarrow f$ irreducible.
- $x^{2}+1$ is irreducible in $\mathbb{R}[x]$ but not in $\mathbb{C}[x]$
- f irreducible \Rightarrow af irreducible for any $a \in \mathbb{K} \backslash\{0\}$

Polynomial ring over a field

Lemma

Every polynomial $f \in \mathbb{K}[x]$ of degree $\operatorname{deg}(f) \geqslant 1$ is a product of irreducible polynomials.

Beweis.

Induction of $\operatorname{deg}(f)$.
Induction base: $\operatorname{deg}(f)=1$
$\Rightarrow f$ is irreduible \Rightarrow assertion
Induction step: $\operatorname{deg}(f)>1$
Case: f is irreducible
Then the assertion is trivial.
Case: f is not irreducible
Then there is g such that $g \mid f$ and $g \neq a f \Rightarrow f=g h$ for a polynomial h with $\operatorname{deg}(h) \geqslant 1 \rightarrow \operatorname{deg}(g), \operatorname{deg}(h)<\operatorname{deg}(f) \xrightarrow{\text { Induction }}$ g and h are products of irrecible polynomials \Rightarrow assertion.

Polynomial ring over a field

Lemma

Let g be an irreducible polynomial and h_{1}, \ldots, h_{s} polynomials such that $g \mid h_{1} \cdots h_{s}$ then $g \mid h_{i}$ for some $1 \leqslant i \leqslant s$.

Beweis.

Induction of s :
Induction Base: $s=1,2$.
$s=1$: the the assertion is trivial.
$s=2: g \mid h_{1} h_{2}$ Beweis. If $g \nmid h_{1} \xrightarrow{g \text { irreducible }} 1=\operatorname{gcd}\left(g, h_{1}\right) \Rightarrow$ exist polynomials u and v such that $1=u g+v h_{1} \Rightarrow$
$\left.h_{2}=\left(u g+v h_{1}\right) h_{2}=u g h_{2}+v h_{1} h_{2}\right) \xrightarrow{g \mid h_{1} h_{2}} g \mid h_{2}$.

Polynomial ring over a field

Beweis.

Induction Step: $s>2$.
$g\left|h_{1} \cdots h_{s}=\left(h_{1} \cdots h_{s-1}\right) h_{s} \xrightarrow{\text { InductionBase }} g\right| h_{1} \cdots h_{s-1}$ or $g \mid h_{s}$
Induction $g \mid h_{i}$ for some $1 \leqslant i \leqslant s$.

Theorem

Let $f \in \mathbb{K}[x]$ be of degree $\operatorname{deg}(f) \geqslant 1$. If $f=g_{1} \cdots g_{r}=h_{1} \cdots h_{s}$ for irreducible polynomials g_{1}, \ldots, g_{r} and h_{1}, \ldots, h_{s} then $r=s$ and after renumbering we have $g_{i}=a_{i} h_{i}$ for some $a_{i} \in \mathbb{K} \backslash\{0\}$, $i=1, \ldots, r=s$.

Polynomial ring over a field

Beweis.

$f=g_{1} \cdots g_{r}=h_{1} \cdots h_{s} \Rightarrow g_{r} \mid h_{1} \cdots h_{s} \xrightarrow{g_{r} \text { irreducible }}$ there is i such that $g_{r} \mid h_{i} \xlongequal{h_{i} \text { irreducible }} h_{i}=a_{i} g_{i}$ for some $a_{i} \in \mathbb{K} \backslash\{0\}$.

Without restriction of generality: $i=s$.
It follows that $g_{1} \cdots g_{r-1}=a_{r} h_{1} \cdots h_{s-1}$
Since $a_{i} h_{1}$ is irreducible we get by induction that $r=s$ and $g_{i}=a_{i} h_{i}$ for some $a_{i} \in \mathbb{K} \backslash\{0\}$.

Polynomial Rings over a Field

Generalization:

Definition

For variables/indeterminates x_{1}, \ldots, x_{n} we call $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ for $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{N}$ a monomial.

For $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in \mathbb{N}^{n}$ we write \underline{x}^{α} for $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$.

Polynomial Rings over a Field

Definition

The $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is the \mathbb{K}-vectorspace with basis $\left\{\mathrm{x}^{\alpha} \mid \alpha \in \mathbb{N}^{n}\right\}$.
We call $f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ or $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ a polynomial.

As a consequence we can write every $f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ uniquely as

$$
f=\sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} \cdot \underline{x}^{\alpha}
$$

for $c_{\alpha} \in \mathbb{K}$ and all but finitely many $c_{\alpha}=0$.

Polynomial Rings over a Field

Theorem

The polynomial ring $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ with the vectorspace addition and the multiplication

$$
\left(\sum_{\alpha \in \mathbb{N}} c_{\alpha} \underline{\alpha}^{\alpha}\right) \cdot\left(\sum_{\alpha \in \mathbb{N}} c_{\alpha}^{\prime} \underline{x}^{\alpha}\right)=\sum_{\alpha \in \mathbb{N}}\left(\sum_{\substack{\beta, \beta^{\prime} \in \mathbb{N}^{n} \\ \beta+\beta^{\prime}=\alpha}} c_{\beta} c_{\beta^{\prime}}^{\prime}\right) \underline{x}^{\alpha}
$$

is a (commutative) ring.

Beweis.
One checks that

$$
\left.\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]=\left(\cdots\left(\mathbb{K}\left[x_{1}\right]\right)\left[x_{2}\right]\right) \cdots\right)\left[x_{n}\right] .
$$

