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Formalities

@ Classes Tuesday 1pm-3pm and Friday 7pm-9pm
@ Problem Sets

e Every two weeks.
e Will be discussed in one of the classes.

o Final exam, end of December
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Rings Revisited

Definition (Commutative ring with 1)

A commutative ring with 1 is a non-empty set R with a
@ Addition +: R x R — R and a
@ Multiplication x: R x R — R

such that
@ R with + is a commutative group,
@ * is associative and commutative,
@ there is a neutral element 1 for the multiplication,
@ a(b+c)=ab+acforall a, b ceR,
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Rings Revisited

o Z, Q, R, C are rings with the usual addition and multiplication

Example (Polynomial ring)

For a ring R is R[x] the ring of polynomials with coefficients in R
in the indeterminate x.

o f=3",ax,g=3Y",bx (assume n < m).
f=g<a=b;,i=0,...,nand b; =0
forn<i< m.

deg(f) = { max{/ | a; # 0} otherwise

is called degree of f.
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Rings Revisited

Example (Polynomial ring)

@ an f € R[x] or f(x) € R[x] has a representation as
f=ag+aix+---apx" for some n > 0.

@ the representation is not unique.

o if we demand that a, # 0 then the representation becomes
unique for f # 0.
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Rings Revisited

Definition (Field)

A commutative ring R with 1 is called a field if every non-zero
element has a multiplicative inverse.

@ a commutative ring with 1 is a field if and only if R\ {0} is a
commutative group.

o examples of fields Q, R, C, Fp,....
@ Z ist not a field, R[x] is not a field.

e we will usually K to denote a field
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Polynomial ring over a field

Let f, g € K[x] then
o deg(f + g) < max{deg(f), deg(g)}.
o deg(f - g) = deg(f) + deg(g).

Convention: We set
—c0o+n=n+-—-00=—00+—00=—00<n

for all n € N.
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Polynomial ring over a field

Theorem (Division with remainder)

Let f, g € K[x] and g # 0. Then there are polynomials q, r € K[x]
such that f = g - q+ r and deg(r) < deg(g).

@ deg(f) < deg(g): thenset g=0and r =7.

e n=deg(f) > m=deg(g):

n m
= Z a;xi, g = Z b;xi.
i=0 i=0

We prove the assertion by induction on n — m.
n=m
Set g = ¢~ and r = f — g 7 then

f=gq+rand deg(r) < deg(g).
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Polynomial ring over a field

n>m
Set qr=¢2x""Mandnn =f— 2 x""g.
Then
f=gq+n and ny =deg(rn) < deg(f).
If deg(r1) < deg(g) then we are done othwise 0 < Ny —m < n—m.
By induction hypothesis we have g, and r» such that

n=gqo+ r and deg(rn) < deg(g) = m.

—f=gq+n
=8q1+8q2+n
=g(q+q)+nr

For g = g1 + g» and r = r» we are done. O
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Polynomial ring over a field

f=2x*+x3+2x>+1and g=x2+2x+1.
2x* 4+ x3 + 2x2 +1:(X2+2x+1) (2X2—3x+6) —9x—5
—2x* —4x3 —2x?
—3x3
3x3 +6x% +3x
6x2 +3x+1
—6x°>—12x—6
—9x—5
g=2x>—3x+6and r = —9x —5.

In the polynomial division f = g g + r with deg(r) < deg(g) we call
r the remainder or rest.
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Polynomial ring over a field

Let f, g € K[x] and g # 0. We say that g divides f if there is a
polynomial g € K[x] with g g = f. We write g|f.

| A

Definition
Let f,g € K[x], f, g # 0. We say that h is the greatest common
divisor of f and g if
e h|f, hlg and
o if for some h’ € K[x] we have h’|f and h’|g then h’|h
We write ged(f, g) for the greatest common divisior of f and g.

A\

— have to show that ged(f, g) exists.
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Polynomial ring over a field

Definition (Euclidian Algorithm)

Let 1, g € K[x] and g # 0.
@Setbp=Ff,by=g,i=1
°

(A) Division with remainder b;_1 = b; q; + r;

Seti=i+1

if bj = ri_1 # 0 then goto (A)

A)
o b,'+1 = r.
"]

(*]
(*]
(*]

Return b;_1
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Polynomial ring over a field

Equivalent formulation:

f=by=biqi+n=gq+n
bi=byg+n=ngp+n
by =b3qzs+rn=rng+n

bio=bi_1qi—1+ri—1="ri—2qi—1+ri—1
bi1=biqi+0=0big+0

b; = gcd(f, g).
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Polynomial ring over a field

For two polynomials f, g € K[x], f, g # 0 the Euclidian algorithm
computes ged(f, g).

Proof.

First we show that the algorithm terminates.
We know that:

© bh=g
o deg(b;) > deg(r;), i>1
2

o deg(bj))=ri1,1>
From that it follows that

deg(g) = deg(by) > deg(r1) > deg(r) > --- .

Since deg takes values in N U {oo} we must have r; = 0 for some /. ]
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Polynomial ring over a field

Proof.

Assume the Euclidian algorithm returns b;.
We prove by induction on j from j =i to 1 that for bp = f, by = g:

b,' = gcd(bj, bjfl)
For i =1: b; =gcd(by, bg) = ged(g, f)
j=
@ bj_1 = bijq; = bilbj_1, b;
@ h|bj_1, h|b; = hl|b;
= bi = ged(bi, bi—1) -
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Polynomial ring over a field

i>j=2
By induction assumption: b; = ged(b;, bj—1).

bj—2=0bj1qj-1+r-1=>bj1qj—1+b;
@ b= ng(bj, bj_l) = b,‘|bj_2.
] h|bj_2, h|bj_1 = h|bj = h| ng(bj, bj_l) = b;
= b; = ng(bjfz, bjfl). L]
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Polynomial ring over a field

X4—2X3+2X2—2X+1:(X3-|—X2—X—].)'(X—3)+ 6X2—4X—2)
B4 x2—x—1= (6X2—4X—2)~
2

b —ax—2— (3x—1) - (Fx+d) +
4
gcd(f,g):§(x—l).
Corollary

For f,g € K[x], f,g # 0, we have that gcd(f, g) exists and is
unique up to multiplication with a € K\ {0}. In addtion there are
u,v € K[x] such that gcd(f,g) =uf+vg.

Follows directly from the Euclidian algorithm.
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Polynomial ring over a field

Let f € K[x] then f has a multiplicative inverse if and only if f = a
for some a € K \ {0}.

Proof.

If a € K\ {0} then a ! € K thusaa!=1and a has a
multiplicative inverse in K[x].
Let g be a multiplicative inverse of f:

=1=fg
= 0 =deg(1) = deg(fg) = deg(f) + deg(g).

deg(f), deg(g) € NU{—o0} = deg(f),deg(g) =0 = f = a for
some a € K\ {0}. ]
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Polynomial ring over a field

Definition

Let f € K[x] and deg(f) > 1. Then we say f is irreducible if g|f

implies that g = af for some a € K\ {0} or g = a for some
ae K\{0}

@ x — b is irreducible for all b

@ deg(f) =1 = f irreducible.
@ x2+ 1 is irreducible in R[x] but not in C[x]
o f irreducible = af irreducible for any a € K\ {0}
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Polynomial ring over a field

Every polynomial f € K[x] of degree deg(f) > 1 is a product of
irreducible polynomials.

Proof.

Induction of deg(f).
deg(f) =1
= f is irreducible = assertion
deg(f) > 1
Case: f is irreducible
Then the assertion is trivial.

Case: f is not irreducible
Then there is g such that g|f and g # a, af for some a € K \ {0}
= f = g h for a polynomial h with deg(h) > 1 —

Induction

deg(g), deg(h) < deg(f) ———— g and h are products of
irreducible polynomials = assertion.
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Polynomial ring over a field

Let g be an irreducible polynomial and hy, ..., hs polynomials such
that glhy - - - hs then glh; for some 1 < i < s.

Proof.
Induction of s:

s=1,2.
s = 1: the assertion is trivial.
s=2: g|h1h2.
If glh1 were are done.
If g Jh1 & ireducble 1 — gcd(g, h1) = exist polynomials u and v
suchthat l=ug+vh = hho=(ug+vhi)hh=ughy+vhihy
Lﬂ% glho. O
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Polynomial ring over a field

s> 2.
glhy -~ hy = (hy - he_1)hs ZHEEEEE gy ey or glh,
sk glh; for some 1 < j < s. O
Let f € K[x] be of degree deg(f) > 1. Iff =g1---g- =h1--- hs
for irreducible polynomials gy, . . ., g and hy, ..., hs then r = s and
after renumbering we have g; = a;h; for some a; € K \ {0},
i=1,..., r=s
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Polynomial ring over a field

Proof.

irreducible ..
there is i such

f:gl"'gr.:hll'"hs = grlhy--- hs =
that g, |h; % h; = a;jg, for some a; € K\ {0}.
Without restriction of generality : i = s.
It follows that gy --- gr—1 = ashy - - - hs_1

Since ash; is irreducible we get by induction on max{r, s} that
r=s and g; = a;h; for some a; e K\{0}and i =1,...,r. ]
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Polynomial Rings over a Field

Generalization:

Definition

For variables/indeterminates xi, . .., x, we call xl"‘1 - x % for
*1,...,%, € N a monomial.

For o = (g, -+, &) € N™ we write x* for x;* - -« xn.

Definition

@ « is the multidegree of x*

o for « € N we set || = oq + - - - + o, which is the degree
deg(x*) of x*. We also set deg(0) = —oo.
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Polynomial Rings over a Field

o= (01,...,%), p=(B1,...,Pn) € N".
ila'lﬁ :50""6_
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Polynomial Rings over a Field

Definition
Klxi, ..., xa] is the K-vectorspace with basis {x* | « € N"}.
We call f € K[xq,..., x5 or f(x1,...,xn) € Klxq,...,x,] a
polynomial.
As a consequence we can write every f € K[xy, ..., x,) uniquely as
f= Z Co - X%
xeNn

for co € K and all but finitely many ¢, are 0. The latter is
equivalent to

]{a| Ca 7&0}‘ < 0.
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Polynomial Rings over a Field

The polynomial ring K[xy, ..., x,] with the vectorspace addition
and the multiplication

(Z ) (E ) =5 (5 aeh)e

xeN xeN xeEN  B,B’enNn
B+pB/=c

is a (commutative) ring with 1.

Proof.
Either verifying all axioms or checking that

| \

Kb, ... xpl = (- (Kbal)xel) - - - ) [xal.
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Polynomial Rings over a Field

Let f =) jenCax® €Kixy, ..., Xnl. Then

deg(f) = max { deg(x®) | co # 0}.

is called the degree of f.

We adopt the convention max () = —co.

deg(f) = —c0 < f =0.
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Polynomial Rings over a Field

We will provide a simple proof of the following fact later:

Lemma

For f,g € Klxy, ..., x, we have

deg(f g) = deg(f) 4 deg(g).

4

Lemma

For f € Klxq, ..., xul is invertible if and only if f = a for some
a e K\{0}.

Same proof as for K[x].
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Polynomial Rings over a Field

Generalize division with remainder to Kixy, ..., xnl.

Obvious analog does not work !

o f=x1,8 =x € Klxq, x)]
deg(f) = deg(g) =1
Assume: f = gq + r for some r with deg(r) < deg(g) =1

o
@ Thus xy =xoqg+rforreK
(]

Evaluating at x = 0 one gets x; = r(xg, 0) contradicting
deg(r) <1
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Ideals

Definition

A subset | of a (commutative) ring R is called an ideal if
o [ with the addition + is an abelian group.
@ for any s € [ and any r € R we have that rs € /.

@ {0} is an ideal
@ R is an ideal.
o {f €¢Klxq,..., x5 | £(0,...,0) =0} is an ideal.
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Ideals

Let R be a (commutative) ring with 1.
An ideal | of R with the addition and multiplication inherited from
R is a ring with 1 if and only if | = R.

I =R = [ is a ring with 1.

lringwithl=1€/=fors=1andre Rwehaver=rlel
= /=R O

Note: If rings are not required to have a 1 then ideals are rings.
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Ideals

Let | be an ideal in the ring R. Then | = R if and only if | contains
an (multiplicatively) invertible element.

| =R = 1¢& | = | contains an invertible element.

a € | invertible = the for any r € R we have r = (ra t)ac | =
| =R. ]

@ The invertible elements of K[x] are the constant polynomials
f=acK\{0}

@ The invertible elements of K[x, ..., X,] are the constant
polynomials f = a € K\ {0}.
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Ideals

For any subset A of a ring R the set
{I'V/AC I, I isan ideal }

has a unique inclusionwise minimal element.

Proof.

Let J be the intersection of all / from the set

A={I|AC I, I is anideal }.

@ As an intersection of ideals J is an ideal (see following
transparency, not covered in class).

@ Since all ideals in the intersection contain A, so does J.

It follows that J is in the set A and must be its unique minimal 54,



Let A be a set of ideals in the ring R. Then (,c 4 | is an ideal in R.

@ Each | € A is an abelian subgroup of the additive group
(R,+). = Jis an abelian subgroup of (R, +).

o Let r e R.
scJ=sclforalll e A=rseclforalll e A= rsecJ.

O

v
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Ideals

Definition

@ For a subset A C R for a ring R we write (A) for the
inclusionwise smallest ideal containing A. The ideal (A) is
called the ideal generated by A and A a generating set for /.

o IfA={A,..., .} we write (fq, ..., f,) for (A).

Note: For an ideal I even inclusionwise minimal A with / = (A) can
have different cardinalities.

e R=27Z,1=(4,6)=(2)
o R=RI[], I =((x—-1? (x-1)(x=2)) = ((x - 1))
o (0)={0}
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Ideals

Let f1, ..., f, € R then

(f,..., ﬁ)z{g1ﬂ+---+grﬁ|g1 ..... greR}.

e "D
... fre(h, - f)=agh+ - -+gfrc(h,. .. f) forall
Bilgooog g& €R

0 "'C”
One proves J = {g1f1+---+g,fr | g1,....8 € R} is an ideal.
= Jis an ideal with f1, ..., f,eld= (fA,..., f,) C J. O
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|deals in Polynomial Rings

Goal: Standardize generating sets of ideals in K[xy, ..., x,] using
Grobner bases.

From Linear Algebra and the section about polynomial rings one
already knows some tools to standardize generating sets of ideals.

o lIdeals in K[x]

@ linear polynomials in Klxy, ..., x,] (later)
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|deals in Polynomial Rings

Let | be an ideal in K[x] then | = (f) for some f € I.

Case: | ={0} then I = (0).
Case: | #{0}

Let f € I\ {0} be a polynomial such that
deg(f) = min{deg(g) | g € 1 \ {0}}.

Assume: | # (f)
Since clearly (f) C I the assumption implies that there is g € I \ ().
Division with remainder:

g ="fq+r, deg(r) < deg(f)

minimal

g,felig—fq:rel%rzo.:>g:fq€(f)a
contradiction. L]
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|deals in Polynomial Rings

@ Inideal / in a ring R such that | = (f) for some f € R is
called a principal ideal.

@ An integral domain R such that all ideals are principal is called
a principal ideal domain or PID.

@ Any integral domain with a "division with remainder” is a PID.
Integral domains with "division with remainder” are called
Euclidian rings.

o Z and K[x]

@ In PIDs every element has a "unique” factorization into

irreducible elements. Ring with "unique” factorization in
irreducible elements are called factorial rings.
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|deals in Polynomial Rings

o K[xq,...,x,) for n > 2 is not a PID.

SEE

(x1, x2) is not a principal ideal in K[xy, xo].

Assume: (x1,x2) is a principal ideal.

= there is f € K[x1, xo] with () = (x1, x2) =

x1,x2 € (f) = {fg | g € K[xl,xz]} = exist g1, & € Klx, xz] with
X1 = fg1 and X = fgg

Evaluating at x; = 0:

= 0=1(0,x)-g1(0,x) = f(0,x2) or g1(0, xp) is the
0-polynomial in K[xp] = f = x1f; or g1 = x1811 )Q;fg% g1 = x1811

= f = a for some a € K\ {0} = 2 invertible, (f) =Klx, xo] =
contradiction.

v
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Monomial ldeals

Definition

An ideal / in K[xq, ..., xp] is called a monomial ideal if / = (A) for
a set A of monomials.

@ (0) = (0) is a monomial ideal

o (1) =KIxq,...,Xs) is a monomial ideal

@ (x1,...,xp) is a monomial ideal in K[x, ..., x,]
° (xfxzz,xlzxg’) is a monomial ideal in K[xq, xo]
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Definition

Monomial ldeals

We say that g € K[x

glf.

xnl, & # 0 divides f € K[xy
there is a polynomial g € K[xq, . .

..... X if
., Xn] with g g = f. We write

o= (x1,....,%), B=(P1, ...,

° "=

Bi

= x*|xP

—a;>0,1<i<n= xP~%isamonomial = x*xP—* =xB

O

V.
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Monomial ldeals

Proof.
e '="

x*|xP = x* g = xP for some g = 3 o cyx¥

= xP = ZyeNﬂ cyx*FY

= f = a+7y for somey € N”

:>oc,-<[3,',i:1,...,n. ]
Definition

For o = (a1, ..., %), B = (B1,...,Bn) we write o« < B if o; < B,
i=1 n.
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Monomial ldeals

x*|xP & o < B.

Remark
Let A be a set of monomials with x*, xP € A, x* # xPB and x*|xP

then (A) = (A\ {xP}).

| A\

Definition
We call a set A of monomials in K[xq, ..., x,] an antichain if

x%, xP € A x* £ xP = x> yxP.

N
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Monomial ldeals

Let | be a monomial ideal then there is an antichain B such that
I =(B).

Proof.
I monomial ideal = | = (A) for a set A of monomials

C= {5‘5 eEA ‘ x* | xP for some;“eA,g“#gﬁ}
Remark = I = (A\ C).

By construction

x%,xP e A\ C,x™ #£xP = x* [xP.

= A\ C is an antichain. O
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Monomial ldeals

Theorem (Dickson’s Lemma)

If A is an antichain (of monomials) in K[xi, ..., x,] then |Al < co.
Induction over n:
n=1

A set of monomials in x; =

xi xP € A= xf|xP or xP|x{.

A antichain |A| < 1 0
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Monomial ldeals

n—1— n.

For the sake of simpler notation we write y for x,

Define

/ f— “1 PR an—l
A = {Xl X, "1

WA xgrtyt e A,

C' = {56 e A | x*|xP for some x* eA’,;O‘;«égﬁ}

Induction

= A’\ C’ is antichain ——= |A’ \ ('] < 0.

Let A’\ C' ={m, ..., m/} = exist {1, ..., ¢ with m;y% € A,
i=1,..., r

A antichain = {1, ..., {, uniquely defined
Set £ = max{{y, ..., ¢} ]
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Monomial ldeals

Set
(ocg, - - ,ocn,l)eN"—l}mA,izo,...,e

A= (- xty!
and A” = AgU--- U Aqg.

Claim: A= A"
) ”2”
Trivial
) ”g”

Assume there is x{ - x " Tyk € A\ A"

e = k> 1L
@ = xX ... x%T 1€A’¢mjl -~ x"1* for some j but
miyY xSy k = k< E { = contradiction

#{D

9/121




Monomial ldeals

Proof
Assumption: |A|
= ’ADA;’ = |A;| = 0o for some i =0, ..., L.

I
8

= thereis i : B; _{ T ex

xPa . x& iyl e } and |Bj] = oo

A; antichain < B; antichain

Induction
—

|Bil = |Aj| < oo = contradiction = |A| < oo. Ol
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Monomial ldeals

Let | be a monomial ideal in K[xq, ..., x,] then there is a finite
antichain A ={mx, ..., m,} of monomials such that | = (A).
This antichain is the inclusionwise smallest set of monomials
generating |.

Dickson's Lemma

| monomial ideal =—=——=——=> exists an antichain A such that

I = (A).
A antichain = |A|] < co = first part of claim. O
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Monomial ldeals

Proof.

Let B be an inclusionwise minimal set of monomials generating /.

m monomial and me€ B = m = myg + - - - + m,g, for some
g1, -, 8 € Klxq, ..., xnl.

= exists j with m;|m.

mj € | =(B) = mj =mihy + -+ m,hs for monomials
my,...,m, € Band hy,..., hs € K[xq, ..., x,]. = exists { with
mg|mj.

B minima]
= m¢/|mj|m

~Aacp =8B

mg/:mj:mEB.
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Monomial ldeals

Let | = (my,..., m,) be a monomial idieal in K[xi, ..., x,] and
f= ZoceN" Cocla S K[Xl ..... Xn],

fels forall x, co # 0 there is mj : mj[x™.

Proof.
° =

| A

f € | = there a polynomials
g=2 o'
YEN”

such that f = mygy + -+ m,g,
every monomial in m;f; is divisible by m;. Ol
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Monomial ldeals

° =
For every o« with mj[x* we have x* € (my,...,m;) =
fe(my,...,m). L]
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Term orders

A linear order < on the set of monomials {x* | « € N"} is called
term order or monomial order if

@ 1 <X x*forall « e N"
@ x* < Xﬁ = x%xY < XBXY for all y € N".

Example

| \

For n =1:
Define
x§ < xP e a<h.

This is a term order for n = 1.
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Term orders

Example (Lexicographic order)

For o« = (ax1,...,%n),B = (B1,....Pn) € N we set

.OCJ':BJ',_]:].,...,I'—l

x* < xP if and only if exists 1 <i < n
o < B

The order < is called the lexicographic (lex) order.

4

The lexicographic order is a term order.

Example (n = 2)

1<xg<x5 <x3-- <X <X[Xp < -+ < x2 <
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Term orders

Example (Degree Lexicographic order)

For o« = (ox1,...,n),B = (B1,...,Bn) € N we set

x* < xPB if and only if

deg(x*) < deg(xP) or
deg(x*) = deg(xB) exists 1 < i< n: 9= Pi=Le

The order < is called the degree lexicographic (deg lex) order.

v

The degree lexicographic order is a term order.

Example (n = 2)

1<x2 <X < X5 < x1X0 < X2 < X3 < x1X5 < X2xp < -+
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Term orders

Example (Degree Reverse Lexicographic order)

For « = (&1, ...,0,), = (B1,...,Bn) € N” we set

x* < xP if and only if

deg(x*) < deg(xP) or

deg(x*) = deg(xP) exists 1 < i< n: M= Bi=iFlen

The order < is called the degree reverse lexicographic (deg rev lex) order.

v

The degree reverse lexicographic order is a term order.

Example (n = 3)

@ X153 < x2xx3 in deg lex.

@ X155 = xZxpx3 in deg rev lex.
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Term orders

Let x,p € N" and < a term order. If x*[xP then x* < xP.

Ol

B pP—aeN' =1 <xP7% o xx. 1 <x*. xP~x =
B
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Term orders

Let < be a term order on the monomials x*, «x € N". Then < is a
well ordering, i.e. there is not infinite descending chain

X x*2 s X3

Proof
Assumption: There is an infinite descending chain

| ‘x
I
I

Dickson'’s L
Consider the monom|a| ideal | = (x*1, x* )., ==n==EATR

exist j1,...,Jr: | = (x%1,..., x%r) = for aII i > 1 there is
Lemma

1<i<r: xo‘fe x% ———= for all i > 1 thereis1 < { < r:
x%ie < x% = for j = max{j, ... ,J,} there is 1 < £ < r with
x%t < x%+1 = contradiction and the claim follows. O
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Term orders

Definition
Let f =) jcnn Cax® € Klx1, ..., x,] and < a term order.
If £ 20 then we set

o Im<(f) = max<{x* | cx # 0} is called the leading monomial
of f (with respect to <).

0 lc<(f) = cy for x¥ =1m<(f) is called the leading coefficient
of f (with respect to <).

If f =0 then we set Im<(f) =lc<(f) =0.

Note: This setting is for technical reasons. 0 is not a monomial.
If Im<(0) = 0 appears then it is read as 0 < m for any monomial
including 1.
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Term orders

f= 2X12X2X3 + 3x1x§’ — 2xf’ € Qlx1, x2, x3]

o < = lex then Im<(f) = x3, le<(f) = —2
o < =deg lex then Im<(f) = xZxox3, le<(f) =2

o < =deg rev lex then Im<(f) = x153, le<(f) =3
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Division Algorithm

f.g.heKlxg,..., x,] and g #0. We say f reduces to h modulo g
in one step if and only if Im<(g) divides a monomial x* with

nonzero coefficient ¢, from f and

h=r- 1C§(g)1mj(g)g

We then write f &5 h.

Example

f.g, heKxil, g #0, deg(f) > deg(g), < deg lex order
f=a+ --+anx(,an#0, g=bo+ -+ bnx{", bm # 0.
n>m= Im<(g) =x"|x" =Im<(f)

for g = ;;f(f,, ().

Hence f = gg + h is not yet division with remainder !!!
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Division Algorithm

f,g € Klxil, g #0, deg(f) > deg(g), < deg lex order
We have seen that there are h1, ..., hs such that

FE&mEmSE. ... & h,

such that

deg(f) > deg(hy) > --- > deg(hs)

or equivalently

lmj(f) >~ lmj(hl) 7= oo p= lmj(hs)

Continue until deg(hs) < deg(g) then for r = hs and suitable g:

f=gqg+r

is division with remainder.
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Division Algorithm

f = x12xQ 4+ 4x1x0 — 3x22,g =2x1 +x +1 € Qlx, x|

<= deg lex

L
2
1 7 11

g
= = §+§X1X2—ZX22
g 13 9, 7

= =X5 — =X5 — —X).
272 4

e —

x1x22 + 5

1X2 — 3X22

S

N
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Division Algorithm

Definition

Let f,h f1,..., fs be polynomials in K[x, ..., xp] with f; #£ 0,
1<i<s. Set F={fi,...,f}. We say f reduces to h modulo F,
denoted as

fE h
if and only if there exists a sequence of indices 7y, ..., ired{l,..., s}
and a sequence of polynomials hy,..., hy 1 € K[xy, ..., xs] such

that
fiy fip fi3 fir s fie
f 5 h >h >h- — h1 - h.
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Division Algorithm

A =xx0—x1, fh=xt —x € Qlx, x)
F ={f, K}, f =xx.
<= deg lex

f—>+ X2

since

f
X]?X2 —1> X]? — X2.
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Division Algorithm

Definition
We call a polynomial r reduced modulo a set F ={f,..., s} of
non-zero polynomials f1,..., s € K[xq, ..., x,] if and only if either

r = 0 or there is no monomial with non-zero coefficient in r which
is divisible by one of Im<(f;), i=1,..., s.

Definition

If £ £>+ r and r is reduced modulo F then we call r the remainder
of f with respect to F.
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Division Algorithm

Data: f,f,...,fs € Kixy,...,x,] with ;#£0,i=1,...,s

Result: uq,...,us,rsuchthat f =i +---+usfs+randr
reduced modulo {f1, ..., fs}

up:=0; up:=0,-+, us:=0, r:=0, h:="f.

while h # 0 do

if exists i such that lIm<(f;) divides Im<(h) then

choose i minimal such that Im<(f;) divides lm<(h)

1C< (h)lmj (h)

U e (F)lm< (F)

else

end

end
return uy, ..., Us, r 69 /121



Division Algorithm

f= x12xz + 4x1x0 — 3x22, i=2x1+x +1¢eQlx,x] <= dex lex

o Initialization: vy =0,r:=0, h:= x12xz + 4xyx0 — 3x22

@ First pass through while loop

x; = lm<(f) divides Im<(h) = xZxo

2
X7 X
u *U1+71 2
2X1
1
= —X1X
2 142
2
hi=h—22g
2X1

7
= ) 1x22 + §x1x2 — 3X22
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Division Algorithm

h= —%xlxz2 + %X]_Xg — 3x22, A=2x1+x0+1, 1 = %x1x2, r=20
@ Second pass through while loop
x; = lm<(f;) divides Im<(h) = x1x3
2
—=X1X
uy = u + 27072
2X1
1 1
X1Xp — =X
22T 472
1
hioh— 2%
2x1
1 7 11
= ZXS + §X1X2 — ZX22
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Division Algorithm

h— —|— X1X2 11X2, h=2x1+x+1, vy = %X1X2—%X22,
r—O

@ Third pass through while loop

x1 = lm<(f;) does not divide Im<(h) = x3

+13
ri=r-4+ —x
42
1 3
_sz

1
h:h—zg

7 11
= —X1X2 — —X
1X2 4 2

2
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Division Algorithm

1 1.2 ,_ 1.3
h—2x1x2——x2 h=2xa+x+1 u=35x10— 35X, r=3%

@ Fourth pass through while loop

x1 = Ilm<(f;) divides Im<(h) = x1x2

v
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Division Algorithm

9,2 7 1 1.2 7
h= I—%XQ — X2, i=2x1+x+1 u = 3X1X2 — 7X5 + zX2,

o Fifths pass through while loop

x1 = lm<(f;) does not divide Im<(h) = x3
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Division Algorithm

__ T — _ 1 1.2 7
h= —1X2, A=2xq+x+1 u = 3X1X2 — 7X5 + zX2,

_1.3_9.2
r=2X — 3%

@ Sixth pass through while loop

x1 = lm<(f;) does not divide Im<(h) = x»

1 9 7
= ZXS §X22 ZXQ
7
pmr=(~Jo)
=0
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Division Algorithm

Theorem

Given a set of non-zero polynomials F = {fy, ..., fs} and f in
Klxi, ..., xa] the division algorithm produces polynomials
u, ..., us € Klxq, ..., Xp) such that

f=wuh+ - +usfs+r

and r is reduced with respect of F and

Im<(f) = man{lmj(u;)lmj(ﬁ), i=1,.. .,s,lmj(r)}.

It holds that
f —>_|_ r.
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Division Algorithm

@ The division algorithm terminates

In each pass through the while loop either

or

h:=h—lc<(h)lm<(h)

decrease Im<(h).

No infinite descending <-chains = algorithm terminates. O
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Division Algorithm

Proof.

o f=uwmh+- - +usfs+r
Show by induction that in each step the equation
f=h+uwuf+ -+ usfs + r is preserved.

> Induction Base: h=f, u1,...,us,r =0.

Then f = h+ 1 fi+ -+ ushs + r D
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Division Algorithm

> Induction Step: f = h+ u1fi + - - + usfs + r holds before the
the next iteration of while loop.

Case : "If" first part:

le< (h)lm< (h)
iTj if;' — — fl
IS S T )

le<(h)lm<(h)

p— xlnhmsh)

h = (F)m< ()

Thus h + u;f; remains constant during the pass through while loop.
Hence f = h+ u1fi +--- + usfs + r after the loop. O
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Division Algorithm

Case : "If" second ("Else”) part:

r — r—i—lcj(h)lmj(h)
h— h—lex(h)lm<(h)

Thus h + r remains constant during the pass through while loop.

Hence f = h+ uifi + - - - + usfs + r after the loop. O

v
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Division Algorithm

o Im<(f) = maxj{lmj(u;)lmj(f,-), i=1,.. .,s,lmj(r)}

Show that in each step the equations the following is preserved:

Im(£) = max< {lm (h), Im (u)lm<(F),i = 1, .., s, Im< ()}

F
(*] f—>+r.

By construction. O
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Grobner Bases

Definition

Let / be an ideal in K[xq, ..., x,] and < a term order. A set of
non-zero polynomials G ={g, ..., g+ C | is a Grébner basis of /
with respect to < if and only if for all f € | such that  # 0 there
exists i € {1, ..., t} such that

Im<(g;) divides Im</(f).

Example

I = (x2+x1,x2+2x1+1) = (x1 + 1) ideal in K[x1], <= deg lex.
o G ={x}+ x1,x? +2x1 + 1} not a Grbner basis for /
@ G ={xy + 1} not a Grébner basis for /

| \
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Grobner Bases

Definition

Let S be a subset of K[xg, ..., x,] and < a term order. Then

in<(S) = (1m<(f) | f € 5)

is called the initial ideal of S.

Note that in<(S) is a monomial ideal.

I = (x2+x1,x2+2x1+1) = (x1 + 1) ideal in K[x1], <= deg lex.

= in< (/) = (x1).

83/121



Grobner Bases

Theorem

Let | # (0) be an ideal and G ={g1,...,gs} C | a set of non-zero
polynomials in K[xy, ..., x,]. The for a term order < the following
are equivalent:

(i) G is a Grobner basis of | with respect to <
(i) fFelefS,0
(i) fel & f=hg +- -+ hsgs with

Im<(f) = max<{lm<(hj)lm<(gi) [ i=1,...,s}

and hi e Klxq, ..., xnl, i=1,...,s.
(iv) in<(/) = in<(G)
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Grobner Bases

o (i) = (ii)

General Fact: f € K[xq, ..., Xn

} Division algorithm
S ———————

dr e Kixq, ..., Xn)
reduced with respect to G such that f £>+ r=f—rel=

felerecl

Using this fact we prove (i) = (ii)
> ="
r=0=rel=fel
> <"
fel=rel.

Assumption: r # 0
G Grob basi . . ..
G Grobner basis oyists gi with Im<(gj)[lm<(r) = contradiction to r

reduced = r =0 ]
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Grobner Bases

Proof.
o (ii) = (iii)
> ="
fel il f S, o Theorembefor ¢ pogy+-o + hogs with

Im<(f) = man{ Im< (h)lm<(g) [ i=1,..., s}

and h; € K[xq,...,xs], i=1,...,5.
P
f—hgi+ -+ hge ==L fel u

86 /121



Grobner Bases

Proof

o (ii)) = (iv)

> inj(G) anj(l)
GCIl=> inj(G) C inj(/).

> in<(G) D in-<(l)

Fel f_ pig+- 4+ hoge with

Im<(f) :maxj{lmj(h)lm<(g,) li=1,..., s}

:lmj(f)einj(G):>in5(l)§inj(G). L]
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Grobner Bases

e (iv) = (i)
4 () = -
fel Im<(f) =Im<(g1)hs + - - - +Im<(gs)hs = exists g;
with Im<(g;)lm<(f) = G Grébner basis Ol
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Grobner Bases

Corollary

Let G ={g1,...,8s} be a Grébner basis of the ideal | in
Kixy, ..., Xn]. Then

I =(g1,.-..8)

Fel (iii) of Theorem

IC(g, ... g) O
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Grobner Bases

Let | CK[xg,..., Xn] be an ideal and < a term order. Then there
is a Grobner basis G ={g1,...,gs} of I.

in<(/) is a monomial ideal = in<(/) = (mq, ..., ms) for finitely
many monomials my, ..., ms g exist g1,...,8s € | with
Im<(gi) = m; (':v; G ={g1,...,&s} Grobner basis O
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Grobner Bases

If I CKlxy,...,xnl is an ideal. Then | is generated by a finite set

of polynomials in K[xq, . .., xp).
We know:
@ / has a Grdbner basis {g1, . . ., gs)
@ a Grdbner basis {g1, . .., gs) generates the ideal.
l:‘/
The number of generators of an ideal in K[xq, ..., Xp) forn > 2 is
not bounded by n !
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Grobner Bases

Definition

A ring R is called Noetherian if every ideal is generated by a finite
set.

e Any PID, Z, K[x].

o Klxq,..., xsl.

@ R Noetherian = RI[x] Noetherian (proof in textbooks)
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Grobner Bases

For the sake of a simpler notation:

Definition

Let G ={g1,...,8s} € Klxy,...,xn]. We say that G is a Grobner
basis, if G is a Grobner basis of (g1, ..., gs).
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Grobner Bases

Let G ={g1,...,8s} C Klxi,...,xnl then the following are
equivalent:

(i) G is a Grobner basis

(ii) The remainder of division by G is unique

| \

Remark

Even for Grobner bases: uy, ..., us such that

g=u1g1+ -+ usgs+r

for r reduced are not neccessarily unique.
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Grobner Bases

Proof.

e (i) = (i)
Assume f £>+ rand f £>+ r’ and r and r’ reduced with respect
to G.

=f—rf-r'e(G)=(f-r)=(f=r')=r"—re(G)

r,r" reduced = r — r’ reduced with respectto G = r—r’' =0 =
/
r=r'. L]

V.
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Grobner Bases

Proof.
e (i) = (i)

We show that (ii) implies

fe(G)@f£>+0.

This is one of the equivalent conditions from the theorem and
implies that G is a Grobner basis.

° n<:1|

f£>+0:>f:u1g1+~-~|—usg5:>fe(G) Ol
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Grobner Bases

Proof.
e '="

We must show:
fe(G)and f £>+ r, r reduced = then r =0

Claim:

e ceK, c#0,

@ m Monomial

e geKlxg,..., Xn] with g £>+ r for r reduced.
Theng—cmg,-3>+rforizl,...,s. Ol
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Grobner Bases

Proof.

Proof of Claim:
Consider the monomial m” = mlm < (g;) Consider the following
cases:

@ m’ does not appear in g =
8i G
g—cmg =g —, r.
e m’ appearsin g =

d’ = coefficient of m’ in g.
d = coefficient of m’ in cmg; = cle<(gi).
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Grobner Bases

Proof.
Case: d =d’

let r; reduced such that g — cmg; £>+ n

By d # 0 it follows that
&i G
g—8—cmg —n

Uniqueness of remainder

G G
=g —>,yrandg =>4 n r =nr and

g—cmg,-£>+r L]
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Grobner Bases

Proof.

Case: d #d’

Set h=g— %cmg,- = the coefficient of mlm<(g;) in his 0.
Then:

e YY)

i>g—cmg,-ﬂ>h

G G
= for h = r1, n reduced, we have g = r, and hence r =, =

G
g—cmgi —4 r.

This completes the proof of the claim. O

y
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Grobner Bases

Proof
Claim (already proved):
e ceK, c#0,

@ m Monomial

o g €Klxg, ..., xy with g £>+ r for r reduced.

Then g —cmg; £>+r1‘ori:1,...,5

fe (gl, . gs) o f— Z,,I h,-g,- expand h; in monomials
f=Yj1GxYg

Claim G Claim G Claim
— f—c1x L = Ve = @l — e, = 7
CI
N g = f— Z 1 Gx% g, —>+rér:0. O
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S-Polynomials and Buchberger's Algorithm

So far:
o Grobner bases have nice properties.

@ not clear how to find a Grobner basis for a given /

Definition

o= (01,...,%n), P=(B1,...,Pn) €N". Then
max(a,Br) | max(xn,By)

lem (x%, xP) = x;

is the least common multiple of x* xP.

|cm(x1x33X4, x13x2X32X4) = Xfx2X§X4.
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S-Polynomials and Buchberger's Algorithm

Let f,g € Klxy, ..., %y, f,g #0 and < a term order. Set
m = lem(lm<(f), Im<(g)). The polynomial

S(f,g) = - f— g

is called the S-polynomial of  and g.

| A\

Example

f=2x1x0—x1,8 = 3><12 —x2 € Qlx1, x2], <= deg lex

("] 1rnj(f) = X1 X2

@ Im<(g) =x3

e m= Icm(xlxz,xlz) = 12XQ
X2 X2x0 1 1 1 1
Sf, = 1 —71 = — f—f :—72 72_
(F 8= e’ 328 20 T 38T g%
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S-Polynomials and Buchberger's Algorithm

Theorem (Buchberger Criterion)

Let G ={g1,...,8s} CKlxq,...,xn and < a term order. Then the
following are equivalent:

o G is a Grobner basis
° S(gi g) £>+O forall1 <i<j<s.

The proof of the result is technical and complicated. We first show
that the theorem provides an algorithm for finding Grobner bases.
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Buchberger's Algorithm

Data: F ={f,..., }eKixg, ..., xp] with f; £0,i=1,..., s
Result: G ={gy,..., g:+} Grobner basis of (F)
G=F 8={{fif}|1<i<j<s}
while 8 # () do
Choose {f, g} € 8;
S:=S\{{f gl
S(f,g) £>+ h for h reduced with respect to G;
if h#0 then

§:=8U{{u, h}| ue G}

G = GU{h}
end

end
return G;
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Buchberger's Algorithm

Example

fi = x1x2 — x2, h = —x1 — x3 € Qlxq, xa, <= lex
@ Initializtion: G ={f, b}, 8 ={{A, H}}
@ First pass through while loop

§:=8\{{h, Lt} =0

S(h ) Si G —xe=h=f;

$:={{h, fs}.{f, f3}}
G :={h. f, s}

106 / 121



Buchberger's Algorithm

@ Second pass through while loop

8 =8\ {{f, B}} = {{h. K}
S(h. ) S, 0= h;
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Buchberger's Algorithm

SEE

@ Third pass through while loop
8 =8\ {{f, &} =0,

S(h, f3) £>+ 0= h;
Return G ={f, h, Z};
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Buchberger's Algorithm
Buchberger's algorithm terminates and is correct.

Proof.
Assumption: The algorithm does not terminate

= There exist infinitly many iterations in which h is added to G

Set G; := F and set G; to be the set G after the ith h =: h; was
added.

=G CGC---

is strictly ascending Ol
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Buchberger's Algorithm

Proof.

h; # 0 is reduced with respect to G;—; = Im<(h;) ¢ in< < (G,-,l))
=

in<((61) ) cinx((6)) cinx((G3)) € -

Is a strictly ascending chain of monomial ideals. Ol
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Buchberger's Algorithm

G{lm< |geG}

Dickson L :
%emst my,...,m, € M with (mq,...,m;) = (M).

Let i’ be such that
mi, ..., m, € U {lmj(g) | g € G,-}

= inj<(G,~)) = (M), i > i’ = contradiction = algorithm

terminates.
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Buchberger's Algorithm

Remains to show that the algorithm is correct and returns a
Grobner basis

S(gi g) £>+ 0 for 1 < i < j < t by termination criterion.

Buchberger Criterion

G={ga,. .., gt} is a Grobner basis.
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S-Polynomials and Buchberger's Algorithm

Let us return to the proof of:

Theorem (Buchberger's Criterion)

Let G ={g1,..., gs} C Klxy, ..., Xn) and < a term order. Then the
following are equivalent:

o G is a Grobner basis
° S(gi gj) £>+O forall1<i<j<s.
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S-Polynomials and Buchberger's Algorithm

Lemma

Letf,....fs €Klx,...,xl, f =) 3 ;¢fi, ¢ €K and < a term
order.

If
o Im<(f) = =Im<(h) =x*
o Im<(f) < x*

Then f is a linear combination of S(f;, f;), 1 < i < j <'s, with
coefficients in K.
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S-Polynomials and Buchberger's Algorithm

@ f; = a;x*+ lower terms

o S(fif) =L1f—1f

f=ah+ -+t

1 1
=aa—h+- -+ cas—fs
dl ds

1 1 1 1
=aai (*fl — *fz) + (c1a1 + C232)(*f2 — *fe,)+
ai ED) ap as

1 1
"'+(C131+'~+Cs—1as—1)( fs—1_7f5>+
s—1 ds
1

(Clal JeceaF Csas);fs

S

=caS(f, h)+ -+ (a1 + -+ cs—1as-1)S(fs—1, fs)
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S-Polynomials and Buchberger's Algorithm

Proof of Buchberger Criterion.

G={g,..., gs} Grobner basis of | = (g1, ..., g&) = Slgi.g) el
and S(gj, gj) £>+ 0 O
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S-Polynomials and Buchberger's Algorithm

Proof of Buchberger Criterion.
0 'L

We use

G Grébner basis <
fel=(g,....8)< f=hg +- -+ hsgs with
Im<(f) = maxj{lmj(h;)lmj(g;) |i=1,... ,s}
and h; € K[xq,..., x5, i=1,...,s.

The "<" directions of the criterion is trivial. O
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S-Polynomials and Buchberger's Algorithm

Proof of Buchberger Criterion.

fel=(g. ..., 8s) = f =higi+ -+ hsgs for
hi,..., hs € Klxq, ..., Xp

For fixed f choose hy, ..., hs such that
x* = max<{lmj(h;)lm<(g,-) li=1,..., s}

is minimal

Case : x* =Ilm<(f)

= we are done
Case : x* > Im<(f)
T = {i ‘ X% = lmj(h;)lmj(gi)} O
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S-Polynomials and Buchberger's Algorithm

Proof of Buchberger Criterion.
h; = d; lm_ (h;)+ smaller terms, g =7 icr dilm<(h;) g

= Im< (d,- lmj(h,-)g,-) =x% i€ T and lm<(g) <x* LeMm exist
dij € K such that

g = Z dUS(lmj(h,)g,,lmj(hJ)gJ)
ijeET
i#j

le< (Im< (h)gi)=lc< (g
x* = lcm (lmj(higi)vlmj(hjgj)) alnalhie) rale

5(1m5(h,-)gi,1mf(hf)gf>

x* x%
= = Im<(h;)gi — = Im~ (h;
T T T

x x*

Tle<(g)im=() " lex(g)Im=(g)

X(X
= = S(gi,
lem(Im< (g 11m‘<(gl)) le gJ) 119/121



S-Polynomials and Buchberger's Algorithm

Proof of Buchberger Criterion.

Assumption

G
S(gi gj) —+0

Easy Exercise NG

G
|cm(lmj(é,-),lmj(gj))5(g’.'gj) —4+ 0

= 5<1m5(h,-)g,-,lmj(hj)gj> £)+ 0
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S-Polynomials and Buchberger's Algorithm

Proof of Buchberger Criterion.

=
exist hjje, 1 <€<s

S(]mj(h,-)g,-, lmj(hj)gj) = ; hi,j,(’,gf

and
max (Im(hije)lms(gr) ) = hms (S(im<(h)gi, m=(h;)g;))

< max<(lm<(hi)gi, Im<(h;)g;))

:K(x

Im<() hig)) =1m<(D Im<(hi)g) < x*

ieT ieT

= Contradiction. [1b1/121



