Functional Analysis - Part II

Lecturer: Prof. Alfonso Sorrentino

Problem sheet 3

Exercise 1. Consider \mathcal{H} a real Hilbert space. Let L be a bounded linear functional on \mathcal{H} and K a non-empty closed convex subset of \mathcal{H}. Prove that there exists in K a unique minimizer of $J(x):=\frac{\|x\|^{2}}{2}+L(x) ;$ namely, there is a unique $x_{0} \in K$ such that

$$
J\left(x_{0}\right)=\inf _{x \in K} J(x)
$$

Exercise 2. Let \mathcal{H} be a Hilbert space and let M, N be closed subspaces of \mathcal{H}.
(i) Prove that

$$
(M+N)^{\perp}=M^{\perp} \cap N^{\perp} \quad \text { and } \quad(M \cap N)^{\perp}=\overline{M^{\perp}+N^{\perp}}
$$

(ii) Prove that the following statements are equivalent $\left(P_{M}\right.$ and P_{N} denote, respecitvely, the orthogonal projections onto M and N):
a) $M \perp N$;
b) $P_{M} \circ P_{N}=P_{N} \circ P_{M}$, i.e. they commute;
c) $P:=P_{M}+P_{N}$ coincides with the projection onto $M+N$.
(iii) Is it true that $M+N$ is necessarily a closed vector subspace?

Exercise 1. (i) (Gram-Schmidt Orthogonalization process) If \mathcal{H} is a Hilbert space and $\left\{h_{n}: n \in \mathbb{N}\right\}$ is a subset of linearly independent elements of \mathcal{H} (i.e., every finite subset consists of linearly independent elements), then there is an orthonormal set $\left\{e_{n}: n \in \mathbb{N}\right\}$ such that for every n the linear span of $\left\{e_{1}, \ldots, e_{n}\right\}$ equals the linear span of $\left\{h_{1}, \ldots, h_{n}\right\}$.

Note: Recall that a set $\left\{e_{n}: n \in \mathbb{N}\right\}$ is said to be orthonormal if

$$
\left\langle e_{n}, e_{m}\right\rangle= \begin{cases}1 & \text { if } n=m \\ 0 & \text { if } n \neq m\end{cases}
$$

(ii) Consider the (complex) Hilbert space $L^{2}([-1,1])$ and apply the Gram-Schmidt orthogonalization process to the three polynomials $\left\{1, x, x^{2}\right\}$. Use this to find the distance of the polynomial x^{3} from the vector subspace generated by $\left\{1, x, x^{2}\right\}$, namely:

$$
\min _{a, b, c \in \mathbb{C}} \int_{-1}^{1}\left|x^{3}-a-b x-c x^{2}\right|^{2} d x
$$

(iii) The Gram-Schmidt process applied to the sequence of monomials $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ yields to the so-called Legendre polynomials $\left(P_{n}\right)_{n \geq 0}$. Show that with the normalization $P_{n}(1)=1$ for all $n \geq 0$, then we obtain $P_{0}(x)=1, P_{1}(x)=x$ and the recursion formula

$$
(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x) \quad n \geq 1
$$

