International Mathematics Master – Academic Year 2020/21 Functional Analysis - Part II

LECTURER: PROF. ALFONSO SORRENTINO

Problem sheet 2

Exercise 1. Let $(\mathcal{H}, \langle \cdot, \cdot, \rangle_{\mathcal{H}})$ be a Hilbert space, $(\mathcal{B}, \|\cdot\|_{\mathcal{B}})$ a Banach space and $T : \mathcal{H} \longrightarrow \mathcal{B}$ an isometric linear isomorphism. Prove that $(\mathcal{B}, \|\cdot\|_{\mathcal{B}})$ is also a Hilbert space.

(Recall that T being an isometry means that $||T(h)||_{\mathcal{B}} = ||h||_{\mathcal{H}}$ for every $h \in \mathcal{H}$, where $|| \cdot ||_{\mathcal{H}}$ denotes the norm induced by $\langle \cdot, \cdot, \rangle_{\mathcal{H}}$.)

Exercise 2. Let $\lambda = {\lambda_n}_{n \in \mathbb{N}}$ be a real sequence with $0 < \lambda_n < 1$ for all $n \in \mathbb{N}$. On the space of square-summable complex sequences (see also Problem sheet 1, exercise 1)

 $\ell^2(\mathbb{C}) := \left\{ \{z_n\}_{n \in \mathbb{N}} \subset \mathbb{C} \quad \text{such that} \quad \sum_{n=0}^{+\infty} |z_n|^2 < \infty \right\}$

define the inner product

$$\langle \{z_n\}_{n\in\mathbb{N}}, \{w_n\}_{n\in\mathbb{N}} \rangle_{\lambda} := \sum_{n=0}^{\infty} \lambda_n z_n \overline{w_n}.$$

Is it true that $(\ell^2(\mathbb{C}), \langle \cdot, \cdot \rangle_{\lambda})$ is a Hilbert space ?

Exercise 3. Let $(\mathcal{X}, \langle \cdot, \cdot, \rangle)$ be an inner product space over \mathbb{F} (where $\mathbb{F} = \mathbb{C}$ or \mathbb{R}). Given $x, y \in \mathcal{X}$, prove that the following statements are equivalent:

- (a) $x \perp y$ (*i.e.*, they are orthogonal, namely $\langle x, y \rangle = 0$).
- (b) For all $\lambda \in \mathbb{F}$, $||x + \lambda y|| = ||x \lambda y||$.
- (c) For all $\lambda \in \mathbb{F}$, $||x + \lambda y|| \ge ||x||$.

Exercise 4. Let $(\mathcal{H}, \langle \cdot, \cdot, \rangle)$ be a Hilbert space and M a closed vector subspace of H. Prove that the quotient space H/M is also a Hilbert space and that it is isometrically isomorphic to $M^{\perp} = \{h \in \mathcal{H} : \langle h, m \rangle = 0 \forall m \in M\}.$ What happens if M is not closed?

(Recall that H/M is the set of equivalence classes with respect to the equivalence relation: $x \sim y$ if and ony if $x - y \in M$.)