International Mathematics Master – Academic Year 2020/21 Functional Analysis - Part II

LECTURER: PROF. ALFONSO SORRENTINO

Problem sheet 1

Exercise 1. Let us consider the set of square-summable complex sequences

$$\ell^2(\mathbb{C}) := \Big\{ \{z_n\}_{n \in \mathbb{N}} \subset \mathbb{C} \text{ such that } \sum_{n=0}^{+\infty} |z_n|^2 < \infty \Big\}.$$

a) Prove that $\ell^2(\mathbb{C})$ is a vector space over \mathbb{C} and that

$$\begin{array}{cccc} \langle \cdot, \cdot \rangle_{\ell^2} : \ell^2(\mathbb{C}) \times \ell^2(\mathbb{C}) & \longrightarrow & \mathbb{C} \\ \left(\{ z_n \}_{n \in \mathbb{N}}, \{ w_n \}_{n \in \mathbb{N}} \right) & \longmapsto & \sum_{n=0}^{+\infty} z_n \overline{w_n} \end{array}$$

defines an inner product on $\ell^2(\mathbb{C})$.

- **b)** Discuss whether $(\ell^2(\mathbb{C}), \langle \cdot, \cdot \rangle_{\ell^2})$ is a Hilbert space.
- c) Consider

 $\mathcal{S} := \{\{z_n\}_{n \in \mathbb{N}} \subset \mathbb{C} \text{ such that only finitely many } z_n \text{'s are non-zero}\}.$

Prove that \mathcal{S} is a vector subspace of $\ell^2(\mathbb{C})$. Is it a Hilbert space with respect to $\langle \cdot, \cdot \rangle_{\ell^2(\mathbb{C})|\mathcal{S}}$ (restricted to \mathcal{S})? If it is not, determine a completion.

Exercise 2. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ be a real Hilbert space. Show that there exists a complex Hilbert space $(\mathcal{K}, \langle \cdot, \cdot \rangle_{\mathcal{K}})$ and a map $U : \mathcal{H} \longrightarrow \mathcal{K}$ such that

- a) U is linear;
- **b)** $\langle U(h_1), U(h_2) \rangle_{\mathcal{K}} = \langle h_1, h_2 \rangle_{\mathcal{H}}$ for every $h_1, h_2 \in \mathcal{H}$;
- c) for every $k \in \mathcal{K}$, there exist unique $h_1, h_2 \in \mathcal{H}$ such that $k = U(h_1) + iU(h_2)$.

Remark: $(\mathcal{K}, \langle \cdot, \cdot \rangle_{\mathcal{K}})$ is called a *complexification* of $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$.

Exercise 3.

(i) Let \mathcal{H} be a real vector space and $\|\cdot\|$ be a norm on it. Prove that if $\|\cdot\|$ satisfies the parallelogram identity

$$||x + y||^{2} + ||x - y||^{2} = 2(||x||^{2} + ||y||^{2}) \quad \forall x, y \in \mathcal{H},$$

then $\|\cdot\|$ arises from an inner product, namely there exists an inner product $\langle\cdot,\cdot\rangle$: $\mathcal{H} \times \mathcal{H} \longrightarrow \mathbb{R}$ such that $\|x\| = \sqrt{\langle x, x \rangle}$ for every $x \in \mathcal{H}$. (See some hints on next page)

- (ii) Let us consider \mathbb{R} with the Lebesgue measure. Prove that the norm $\|\cdot\|_{L^p}$, with $p \geq 1$ or $p = \infty$, satisfies the parallelogram identity if and only if p = 2 (in other words, $L^2(\mathbb{R})$ is the only Hilbert space among the spaces $L^p(\mathbb{R})$).
- (iii) (Facultative) Prove the statement in item (i) in the case of a complex vector space. (See some hints below)

Some Hints:

- Exercise 3 (i). Define $\langle x, y \rangle := \frac{1}{4} (\|x + y\|^2 \|x y\|^2)$ and prove that it is an inner product and that it generates $\|\cdot\|$. One could proceed as follows:
 - Step 1: Prove that $2\langle \frac{x+y}{2}, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ for every $x, y, z \in \mathcal{H}$.
 - Step 2: Deduce that $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ for every $x, y, z \in \mathcal{H}$.
 - Step 3: Prove that $\langle \frac{m}{n} x, y \rangle = \frac{m}{n} \langle x, y \rangle$ for every $x, y \in \mathcal{H}$ and $\frac{m}{n} \in \mathbb{Q}$.
 - Step 4: Prove that $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ for every $x, y \in \mathcal{H}$ and $\alpha \in \mathbb{R}$.
- Exercise 3 (iii). Define $\langle x, y \rangle := \frac{1}{4} \Big[(\|x+y\|^2 \|x-y\|^2) + i (\|x+iy\|^2 \|x-iy\|^2) \Big].$