International Mathematics Master - Academic Year 2020/21

Functional Analysis - Part II

Lecturer: Prof. Alfonso Sorrentino

Problem sheet 1

Exercise 1. Let us consider the set of square-summable complex sequences

$$
\ell^{2}(\mathbb{C}):=\left\{\left\{z_{n}\right\}_{n \in \mathbb{N}} \subset \mathbb{C} \quad \text { such that } \sum_{n=0}^{+\infty}\left|z_{n}\right|^{2}<\infty\right\}
$$

a) Prove that $\ell^{2}(\mathbb{C})$ is a vector space over \mathbb{C} and that

$$
\begin{aligned}
\langle\cdot, \cdot\rangle_{\ell^{2}}: \ell^{2}(\mathbb{C}) \times \ell^{2}(\mathbb{C}) & \longrightarrow \mathbb{C} \\
\left(\left\{z_{n}\right\}_{n \in \mathbb{N}},\left\{w_{n}\right\}_{n \in \mathbb{N}}\right) & \longmapsto \sum_{n=0}^{+\infty} z_{n} \overline{w_{n}}
\end{aligned}
$$

defines an inner product on $\ell^{2}(\mathbb{C})$.
b) Discuss whether $\left(\ell^{2}(\mathbb{C}),\langle\cdot, \cdot\rangle_{\ell^{2}}\right)$ is a Hilbert space.
c) Consider

$$
\mathcal{S}:=\left\{\left\{z_{n}\right\}_{n \in \mathbb{N}} \subset \mathbb{C} \quad \text { such that only finitely many } z_{n} \text { 's are non-zero }\right\} .
$$

Prove that \mathcal{S} is a vector subspace of $\ell^{2}(\mathbb{C})$. Is it a Hilbert space with respect to $\langle\cdot, \cdot\rangle_{\ell^{2}(\mathbb{C})_{\mid \mathcal{S}}}$ (restricted to \mathcal{S})? If it is not, determine a completion.

Exercise 2. Let $\left(\mathcal{H},\langle\cdot, \cdot\rangle_{\mathcal{H}}\right)$ be a real Hilbert space. Show that there exists a complex Hilbert space $\left(\mathcal{K},\langle\cdot, \cdot\rangle_{\mathcal{K}}\right)$ and a map $U: \mathcal{H} \longrightarrow \mathcal{K}$ such that
a) U is linear;
b) $\left\langle U\left(h_{1}\right), U\left(h_{2}\right)\right\rangle_{\mathcal{K}}=\left\langle h_{1}, h_{2}\right\rangle_{\mathcal{H}}$ for every $h_{1}, h_{2} \in \mathcal{H}$;
c) for every $k \in \mathcal{K}$, there exist unique $h_{1}, h_{2} \in \mathcal{H}$ such that $k=U\left(h_{1}\right)+i U\left(h_{2}\right)$.

Remark: $\left(\mathcal{K},\langle\cdot, \cdot\rangle_{\mathcal{K}}\right)$ is called a complexification of $\left(\mathcal{H},\langle\cdot, \cdot\rangle_{\mathcal{H}}\right)$.

Exercise 3.

(i) Let \mathcal{H} be a real vector space and $\|\cdot\|$ be a norm on it. Prove that if $\|\cdot\|$ satisfies the parallelogram identity

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) \quad \forall x, y \in \mathcal{H}
$$

then $\|\cdot\|$ arises from an inner product, namely there exists an inner product $\langle\cdot, \cdot\rangle$: $\mathcal{H} \times \mathcal{H} \longrightarrow \mathbb{R}$ such that $\|x\|=\sqrt{\langle x, x\rangle}$ for every $x \in \mathcal{H}$.
(See some hints on next page)
(ii) Let us consider \mathbb{R} with the Lebesgue measure. Prove that the norm $\|\cdot\|_{L^{p}}$, with $p \geq 1$ or $p=\infty$, satisfies the parallelogram identity if and only if $p=2$ (in other words, $L^{2}(\mathbb{R})$ is the only Hilbert space among the spaces $\left.L^{p}(\mathbb{R})\right)$.
(iii) (Facultative) Prove the statement in item (i) in the case of a complex vector space. (See some hints below)

Some Hints:

- Exercise 3 (i). Define $\langle x, y\rangle:=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)$ and prove that it is an inner product and that it generates $\|\cdot\|$. One could proceed as follows:
- Step 1: Prove that $2\left\langle\frac{x+y}{2}, z\right\rangle=\langle x, z\rangle+\langle y, z\rangle$ for every $x, y, z \in \mathcal{H}$.
- Step 2: Deduce that $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$ for every $x, y, z \in \mathcal{H}$.
- Step 3: Prove that $\left\langle\frac{m}{n} x, y\right\rangle=\frac{m}{n}\langle x, y\rangle$ for every $x, y \in \mathcal{H}$ and $\frac{m}{n} \in \mathbb{Q}$.
- Step 4: Prove that $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle$ for every $x, y \in \mathcal{H}$ and $\alpha \in \mathbb{R}$.
- Exercise 3 (iii). Define $\langle x, y\rangle:=\frac{1}{4}\left[\left(\|x+y\|^{2}-\|x-y\|^{2}\right)+i\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right)\right]$.

