3. Algebra: Exercise sheet number 3

Submit as written homework the solutions to exercises (1), (2), (5). The other exercises will be discussed in the tutorials (and you should prepare for this discussion).

- (1) Let G be a group with |G| = 16 acting on a set with X with 33 elements. Does the action of G have a fix point i.e. an element $x \in X$ with $g \cdot x = x$ for all $g \in G$?
- (2) Let G be a finite group. Let $A \subset B \subset G$ be two subgroups. Let $N_G(A) := \{g \in G \mid gAg^{-1} = A\}$ be the normaliser of A in G. and $Z_G(A) = \{g \in G \mid gag^{-1} = a \forall_{a \in A}\}$ the centralizer of A in G. Which of the following is true? Find proof of counterexample.
 - (a) $N_G(A) \subset N_G(B)$
 - (b) $N_G(A) \supset N_G(B)$
 - (c) $Z_G(A) \subset Z_G(B)$
 - (d) $Z_G(A) \supset Z_G(B)$
 - (e) $Z(A) \subset Z(B)$
 - (f) $Z(A) \supset Z(B)$.
- (3) Find a subgroup H of S_3 of order 3, i.e. with |H| = 3.
- (4) Let

$$\sigma := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 1 & 6 & 7 & 9 & 8 \end{pmatrix} \in S_9.$$

Find the cycle decomposition of σ , find the cycle type of σ , and write an element of S_9 which is conjugated to σ .

(5) Show: An *r*-cycle in S_n is even if and only if *r* is odd.