* Hahn-Banach Theorem fur

Banach spaces
Let M be a subopace of the Banach space H . If 6 is a bounded linear functional on M, then $\exists \Phi \in H^{*}$ sot
$\Phi(f)=\varphi(f)$ for $f \in M$ and $\|\Phi\|=\|\varphi\|$.
Proof: Denote by \tilde{H} the real linear space It with scalar field \mathbb{R} instead of \mathbb{C}.
\rightarrow Then the norm $\|\cdot\|: \tilde{H} \rightarrow \mathbb{R}$ is a sublinear functional on \tilde{H}.
\rightarrow Also $U=\operatorname{Re}$ is an $\| 2$-linear functional on the real subspace \tilde{M} with $\|\psi\| \leq\|\varphi\| \quad(\varphi=\psi+i \operatorname{Im} \varphi)$
\rightarrow setting $P(f):=\|G\|\|f\|$

$$
\Rightarrow \psi(f) \leq\|\psi\|\|f\| \leq p(f) \forall f \in \tilde{M}
$$

where p is also sublinear on \tilde{H}.
\therefore By the first Hahn-Banach theorem三 an \mathbb{R}-linear functional Ψ on \tilde{H} sot
$\underline{\Psi}(f)=U(f)$ on \bar{M} and

$$
\begin{equation*}
\Psi(f) \leq p(f)=\|6\|\|f\| \quad \forall f \in \mathcal{H} \tag{A}
\end{equation*}
$$

\rightarrow Define $\Phi: 1+\rightarrow \mathbb{C}$ by

$$
\Phi(f)=\Psi(f)-i \Psi(i f)
$$

\rightarrow We want to show that $\Phi \in 1 t^{*}$ (bounded \mathbb{C}-linear functional) that extends φ with norm $\|C\|$.
\rightarrow Fur $f, g \in \mathcal{H}$, we have

$$
\begin{aligned}
& \Phi(f+g)=\Psi(f+g)-i \Psi(i(f+g)) \\
= & \Psi(f)+\Psi(g)-i \Psi(i f)-i \Psi(i g) \\
= & \Psi(f)+\Phi(g) \\
- & F u r \lambda_{1}, \lambda_{2} \in \mathbb{R} \\
& \Psi\left(\left(\lambda_{1}+i \lambda_{2}\right) f\right)=\Phi\left(\lambda_{1} f\right)+\Psi\left(i \lambda_{2} f\right)
\end{aligned}
$$

$$
=\lambda_{1} \Phi(f)+i \lambda_{2} \Phi(f)=\left(\lambda_{1}+i \lambda_{2}\right) \Phi(f)
$$

because $\Phi(i f)=\Psi(i f)+i \psi(f)=i \Phi(f)$.
$\therefore \Phi$ is a complex linear functional on H. Fur $f \in M$, we have

$$
\begin{aligned}
& \Phi(f)=\psi(f)-i \psi(i f)=\operatorname{Re\varphi }(f)-i \operatorname{Re\varphi }(i f) \\
& =\operatorname{Re\varphi }(f)-i \operatorname{Re}(i \varphi(f)) \\
& =\operatorname{Re\varphi }(f)-i(-\operatorname{Im} \varphi(f))=\varphi(f)
\end{aligned}
$$

because $\operatorname{Im} z=-\operatorname{Re}(i z), z=x+i y$
So Φ extends φ from M to $1 t$.
\rightarrow By (A) we have $\|\underline{\Psi}\| \leq\|C\|$ and also $\|c\| \leq\|\Phi\|$ - Therefore to prove $\|\Phi\|=\|G\|$ it suffice, to prove $\|\Phi\| \leqslant\|\Psi\|$.
\longrightarrow Fur $f \in \mathcal{H}$ write $\Phi(f)=r e^{i e}$, then $|\Phi(f)|=r=e^{-i e} \Phi(f)=\Phi\left(e^{-i e} f\right)$

$$
\begin{aligned}
& =\Psi\left(e^{-i e} f\right)=\left|\Psi\left(e^{-i \theta} f\right)\right| \leq\|C\|\|f\| \\
& \therefore\|\Phi\| \leq\|G\|=,\|\Phi\|=\|6\|
\end{aligned}
$$ and $\mathbb{\Psi} \in 1 H^{*}$ that extends 6 VIII

Corollary: If $f \in 1 H$, then $\exists 6 \in 1 t^{*}$ with $\|G\|=1$ so that $G(f)=\|f\|$.

Proof: Assume $f \neq 0$ - Let

$$
M=\{\lambda f: \lambda \in \mathbb{C}\}=\mathbb{C} f
$$

and define Ψ on M by $\psi(f \lambda)=\lambda\|f\|$
$\rightarrow U$ is a bound \mathbb{C}-linear functional un M with $\|U\|=\sup |\psi(\lambda f)|$

$$
=\sup |\lambda|\|f\|=I
$$

$$
|\lambda|\|f\| \leq ?
$$

\therefore By $H-B$ Theorem $\exists G \in 1 t^{*}$ with $\|G\|=\|\Psi\|=I \quad s . t$

$$
U(f)=U(f)=\|f\|
$$

Corollary: If $\varphi(f)=0 \quad \forall \varphi \in H^{*}$ then $f=0$.

* Recall the "evaluation map"

$$
\begin{gathered}
J: 1 H \longrightarrow 1 H^{* *} \text { where }(J f)(\varphi)=\hat{f}(\varphi) \\
f \mapsto \hat{f} \\
=\varphi(f)
\end{gathered}
$$

$$
\rightarrow\|J f\|=\sup _{\substack{\|\varphi\| \leq 1 \\ \varphi \in 1 t^{*}}} \quad \hat{f}(\varphi)\left|=\sup ^{\|\varphi\| \leq 1}\right| \varphi(f) \mid
$$

$=\|f\|$ in general $\forall f \in \cap t$ by previous corollaries
$\therefore J$ is an isometry (hence injective) III

* $\varphi(x)$ is a universal Banach space

Every Banach space $n t$ is isometrically isomorphic to a closed subspace of $e(x)$ for some compact Hausdorff space X.

Proof: Let $x=B_{1}^{*}$ the unit ball of 1H* with the w. topology. *-top
\rightarrow So x is a compact Hausdorff space.
\rightarrow Define $\beta: n t \rightarrow e(x)$ by

$$
(\beta f)(\omega)=\omega(f)
$$

\rightarrow For $f_{1}, f_{2} \in \mathcal{H}, \lambda_{1}, \lambda_{2} \in \mathbb{C}$, we have

$$
\begin{aligned}
& B\left(\lambda_{1} f_{1}+\lambda_{2} f_{2}\right)(\varphi)=\varphi\left(\lambda_{1} f_{1}+\lambda_{2} f_{2}\right) \\
& =\lambda_{1} \varphi\left(f_{1}\right)+\lambda_{2} \varphi\left(f_{2}\right) \\
& =\lambda_{1} \beta\left(f_{1}\right)(\varphi)+\lambda_{2} \beta\left(f_{2}\right)(\varphi)
\end{aligned}
$$

$\therefore \beta$ is a linear map.
\rightarrow Fur $f \in$ M-1 we have

$$
\begin{aligned}
& \|\beta(f)\|_{\infty}=\sup _{\varphi \in B_{1}^{*}}|\beta(f)(\varphi)|=\sup _{\varphi \in B_{1}^{*}}|\varphi(f)| \\
& \leqslant \sup \|\varphi\|\|f\| \leqslant\|f\|=\text { - (B) }
\end{aligned}
$$

But by the Corullaries $\exists G \in B$, s.t $\theta(f)=\|f\|$, so we have in (B)

$$
\|\beta(f)\|_{\infty}=\|f\|
$$

$\therefore \beta: 1+\underset{\approx}{\approx} l(x)$ is an
"isumetric isumorphiom"

